add some logs, refactor dataloader
This commit is contained in:
parent
ec1e1e5ccf
commit
63307c79a1
78
train.py
78
train.py
@ -1,6 +1,6 @@
|
||||
"""Training script for LLaMA model.
|
||||
torchrun --nproc_per_node 1 --master_addr localhost --master_port 25500 train.py --use_wandb
|
||||
torchrun --nproc_per_node 2 --master_addr localhost --master_port 25500 train.py --tp_size 2
|
||||
torchrun --nproc_per_node 4 --master_addr localhost --master_port 25500 train.py --tp_size 4
|
||||
torchrun --nproc_per_node 2 --master_addr localhost --master_port 25500 train.py --pp_size 2
|
||||
torchrun --nproc_per_node 2 --master_addr localhost --master_port 25500 train.py --pp_size 1 --dp_size 2
|
||||
CUDA_DEVICE_MAX_CONNECTIONS=1 debugpy-run -p 5678 -m torch.distributed.run -- --nproc_per_node=2 --nnodes=1 --rdzv_backend=c10d --rdzv_endpoint=localhost:29400 train.py --pp_size 2
|
||||
@ -9,6 +9,8 @@ CUDA_DEVICE_MAX_CONNECTIONS=1 torchrun --nproc_per_node=4 --nnodes=1 --
|
||||
"""
|
||||
|
||||
import os
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
import torch.nn.functional as F
|
||||
import torch, torch.distributed as dist
|
||||
@ -17,12 +19,12 @@ from transformers import AutoConfig
|
||||
from transformers import AutoTokenizer
|
||||
from torch.utils.data import DataLoader, DistributedSampler
|
||||
from datasets import load_dataset,Features, Sequence, Value
|
||||
import argparse
|
||||
from functools import partial
|
||||
from datasets import Features, Sequence, Value
|
||||
import numpy as np
|
||||
from src.parallel.tensor_parallel.tensor_parallel import TensorParallel
|
||||
import src.distributed.process_group_manager as pgm
|
||||
from utils import set_all_seed, print
|
||||
from utils import set_all_seed, print, to_readable_format
|
||||
from src.distributed.process_group_manager import setup_process_group_manager
|
||||
from src.parallel.pipeline_parallel import train_step_pipeline_1f1b, train_step_pipeline_afab, PipelineParallel
|
||||
from src.parallel.data_parallel.data_parallel_bucket import DataParallel
|
||||
@ -70,33 +72,45 @@ class MicroBatchDataLoader(DataLoader):
|
||||
shuffle=False
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def tokenizer_group_text(examples, tokenizer, sequence_length):
|
||||
"""Tokenize a list of texts and group them in chunks of sequence_length + 1"""
|
||||
tokenized_text_batch = tokenizer.batch_encode_plus(
|
||||
examples,
|
||||
return_attention_mask=False,
|
||||
return_token_type_ids=False,
|
||||
return_tensors='np'
|
||||
)
|
||||
concatenated_tokens = {'input_ids': np.concatenate(tokenized_text_batch['input_ids'])}
|
||||
total_length = len(concatenated_tokens['input_ids'])
|
||||
if total_length >= sequence_length + 1:
|
||||
total_length = ((total_length - 1) // sequence_length) * sequence_length + 1
|
||||
result = {
|
||||
'input_ids': [
|
||||
concatenated_tokens['input_ids'][i : i + sequence_length + 1]
|
||||
for i in range(0, total_length - sequence_length, sequence_length)
|
||||
]
|
||||
}
|
||||
return result
|
||||
|
||||
def tokenize_dataset(self, dataset, text_column_name, sequence_length, num_proc):
|
||||
def _tokenizer_group_text(texts):
|
||||
tokenized_text_batch = self.tokenizer.batch_encode_plus(
|
||||
texts,
|
||||
return_attention_mask=False,
|
||||
return_token_type_ids=False,
|
||||
return_tensors='np'
|
||||
)
|
||||
concatenated_tokens = {'input_ids': np.concatenate(tokenized_text_batch['input_ids'])}
|
||||
total_length = len(concatenated_tokens['input_ids'])
|
||||
if total_length >= sequence_length + 1:
|
||||
total_length = ((total_length - 1) // sequence_length) * sequence_length + 1
|
||||
result = {
|
||||
'input_ids': [
|
||||
concatenated_tokens['input_ids'][i : i + sequence_length + 1]
|
||||
for i in range(0, total_length - sequence_length, sequence_length)
|
||||
]
|
||||
}
|
||||
return result
|
||||
"""Tokenize the dataset and group texts in chunks of sequence_length + 1"""
|
||||
# Create a partial function with fixed arguments
|
||||
tokenizer_func = partial(
|
||||
self.tokenizer_group_text,
|
||||
tokenizer=self.tokenizer,
|
||||
sequence_length=sequence_length
|
||||
)
|
||||
|
||||
tokenized_dataset = dataset.map(
|
||||
_tokenizer_group_text,
|
||||
tokenizer_func,
|
||||
input_columns=text_column_name,
|
||||
remove_columns=dataset.column_names,
|
||||
features=Features({"input_ids": Sequence(feature=Value(dtype="int64"), length=sequence_length + 1)}),
|
||||
features=Features({
|
||||
"input_ids": Sequence(feature=Value(dtype="int64"), length=sequence_length + 1)
|
||||
}),
|
||||
batched=True,
|
||||
num_proc=num_proc, # Adjust this based on your system capabilities
|
||||
num_proc=num_proc,
|
||||
load_from_cache_file=True,
|
||||
desc=f"Grouping texts in chunks of {sequence_length+1}",
|
||||
)
|
||||
@ -189,7 +203,7 @@ if __name__ == "__main__":
|
||||
|
||||
# SEQ_LEN, GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, LEARNING_RATE, NUM_SAMPLES, MAX_TOKENS, SEED = 10, 6, 2, 1e-4, 20, 1800, 42
|
||||
## hyperparameters
|
||||
SEQ_LEN, GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, LEARNING_RATE, NUM_SAMPLES, MAX_TOKENS, SEED = 1024, 16, 4, 3e-4, 100000, int(10e8), 42
|
||||
SEQ_LEN, GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, LEARNING_RATE, NUM_SAMPLES, MAX_TOKENS, SEED = 1024, 32, 1, 3e-4, 100000, int(10e8), 42
|
||||
grad_acc = 16
|
||||
|
||||
assert SEQ_LEN % args.cp_size == 0, "SEQ_LEN must be divisible by cp_size for Context Parallelism"
|
||||
@ -213,7 +227,9 @@ if __name__ == "__main__":
|
||||
|
||||
dataset_name = "roneneldan/TinyStories"
|
||||
model_name = "HuggingFaceTB/SmolLM-360M-Instruct"
|
||||
# model_name = "meta-llama/Llama-2-7b-hf"
|
||||
config = AutoConfig.from_pretrained(model_name)
|
||||
config.num_hidden_layers = 16
|
||||
config.num_attention_heads = 16
|
||||
config.num_key_value_heads = 4
|
||||
|
||||
@ -271,7 +287,7 @@ if __name__ == "__main__":
|
||||
while trained_tokens < MAX_TOKENS:
|
||||
#TODO: Add epoch support
|
||||
# data_loader.set_epoch(step)
|
||||
|
||||
step_start_time = time.time()
|
||||
optimizer.zero_grad()
|
||||
|
||||
if pgm.process_group_manager.pp_world_size > 1:
|
||||
@ -288,12 +304,16 @@ if __name__ == "__main__":
|
||||
# In DDP implementation I need to reset the gradient buffers
|
||||
if hasattr(model, 'reset'):
|
||||
model.reset()
|
||||
|
||||
step_duration = time.time() - step_start_time
|
||||
|
||||
if pgm.process_group_manager.tp_rank == 0 and pgm.process_group_manager.dp_rank == 0 and pgm.process_group_manager.pp_is_last_stage:
|
||||
print(f"[rank {pgm.process_group_manager.global_rank}] Step: {step}, Loss: {loss:.4f}, "
|
||||
f"Global batch size: {tokens_per_step}, "
|
||||
f"Tokens: {trained_tokens}/{MAX_TOKENS}"
|
||||
)
|
||||
f"Global batch size: {to_readable_format(tokens_per_step)}, "
|
||||
f"Tokens/s: {to_readable_format(tokens_per_step / step_duration)}, "
|
||||
f"Tokens/s/GPU: {to_readable_format(tokens_per_step / step_duration / world_size)}, "
|
||||
f"Tokens: {to_readable_format(trained_tokens)}/{to_readable_format(MAX_TOKENS)}"
|
||||
)
|
||||
|
||||
if pgm.process_group_manager.global_rank == 0 and args.use_wandb:
|
||||
wandb.log({"loss": loss, "trained_tokens": trained_tokens})
|
||||
|
||||
12
utils.py
12
utils.py
@ -19,6 +19,18 @@ def set_all_seed(seed):
|
||||
torch.manual_seed(seed)
|
||||
if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
|
||||
|
||||
def to_readable_format(num, precision=2):
|
||||
if num >= 1e12:
|
||||
return f"{num / 1e12:.{precision}f}T"
|
||||
elif num >= 1e9:
|
||||
return f"{num / 1e9:.{precision}f}B"
|
||||
elif num >= 1e6:
|
||||
return f"{num / 1e6:.{precision}f}M"
|
||||
elif num >= 1e3:
|
||||
return f"{num / 1e3:.{precision}f}K"
|
||||
else:
|
||||
return f"{num:.{precision}f}"
|
||||
|
||||
## def display_4D_parallelism_grid():
|
||||
# #TODO(fmom): fix me
|
||||
# #TODO(fmom): add color to distinguish between different parallelism groups
|
||||
|
||||
Loading…
Reference in New Issue
Block a user