some logs,will clean later

This commit is contained in:
zzhhjjj 2024-10-27 02:22:36 +00:00
parent e5cfb5240e
commit 762127afcd

View File

@ -1,9 +1,9 @@
"""Training script for LLaMA model.
torchrun --nproc_per_node 1 --master_addr localhost --master_port 25500 train.py --use_wandb
torchrun --nproc_per_node 4 --master_addr localhost --master_port 25500 train.py --tp_size 4
torchrun --nproc_per_node 2 --master_addr localhost --master_port 25500 train.py --pp_size 2
torchrun --nproc_per_node 2 --master_addr localhost --master_port 25500 train.py --pp_size 1 --dp_size 2
CUDA_DEVICE_MAX_CONNECTIONS=1 debugpy-run -p 5678 -m torch.distributed.run -- --nproc_per_node=2 --nnodes=1 --rdzv_backend=c10d --rdzv_endpoint=localhost:29400 train.py --pp_size 2
torchrun --nproc_per_node 2 --master_addr localhost --master_port 25500 train.py --tp_size 2 --use_wandb
torchrun --nproc_per_node 4 --master_addr localhost --master_port 25500 train.py --tp_size 2 --pp_size 2 --use_wandb
torchrun --nproc_per_node 8 --master_addr localhost --master_port 25500 train.py --tp_size 2 --dp_size 2 --pp_size 2 --use_wandb
CUDA_DEVICE_MAX_CONNECTIONS=1 debugpy-run -p 5678 -m torch.distributed.run -- --nproc_per_node=4 --nnodes=1 --rdzv_backend=c10d --rdzv_endpoint=localhost:29400 train.py --tp_size 2 --pp_size 2
CUDA_DEVICE_MAX_CONNECTIONS=1 torchrun --nproc_per_node=4 --nnodes=1 --rdzv_backend=c10d --rdzv_endpoint=localhost:29400 --max_restarts=0 --tee=3 train.py
#VERBOSE=0 torchrun --nproc_per_node 4 --master_addr localhost --master_port 25500 train.py --pp_size 2 --dp_size 2
"""
@ -203,9 +203,10 @@ if __name__ == "__main__":
# SEQ_LEN, GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, LEARNING_RATE, NUM_SAMPLES, MAX_TOKENS, SEED = 10, 6, 2, 1e-4, 20, 1800, 42
## hyperparameters
SEQ_LEN, GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, LEARNING_RATE, NUM_SAMPLES, MAX_TOKENS, SEED = 1024, 32, 1, 3e-4, 100000, int(10e8), 42
grad_acc = 16
SEQ_LEN, GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, LEARNING_RATE, NUM_SAMPLES, MAX_TOKENS, SEED = 1024, 128, 32, 3e-4, 200000, None, 42
total_train_steps = 200
grad_acc = 1
assert SEQ_LEN % args.cp_size == 0, "SEQ_LEN must be divisible by cp_size for Context Parallelism"
backend = "gloo" if args.use_cpu else "nccl"
@ -223,6 +224,9 @@ if __name__ == "__main__":
# if pgm.process_group_manager.global_rank == 0:
# display_4D_parallelism_grid()
tokens_per_step = GLOBAL_BATCH_SIZE * SEQ_LEN * grad_acc * args.dp_size
if pgm.process_group_manager.global_rank == 0:
print("Tokens per step:", to_readable_format(tokens_per_step))
set_all_seed(SEED)
dataset_name = "roneneldan/TinyStories"
@ -233,12 +237,15 @@ if __name__ == "__main__":
config.num_attention_heads = 16
config.num_key_value_heads = 4
start_time = time.time()
model = Llama(config=config)
print("init model time:", time.time()-start_time)
if pgm.process_group_manager.global_rank == 0 and args.use_wandb:
wandb_rank = pgm.process_group_manager.tp_rank == 0 and pgm.process_group_manager.dp_rank == 0 and pgm.process_group_manager.pp_is_last_stage
if wandb_rank and args.use_wandb:
wandb.init(
project="picotron",
name=f"test_convergence_{pgm.process_group_manager}",
name=f"test_convergence_GBS_{tokens_per_step}_{pgm.process_group_manager}",
config={
"tensor_parallel_size": pgm.process_group_manager.tp_size,
"pipeline_parallel_size": pgm.process_group_manager.pp_size,
@ -253,6 +260,7 @@ if __name__ == "__main__":
},
)
start_time = time.time()
if pgm.process_group_manager.tp_world_size > 1:
TensorParallel(model)
@ -265,16 +273,19 @@ if __name__ == "__main__":
if pgm.process_group_manager.dp_world_size > 1:
model = DataParallel(model)
print("init parallel time:", time.time()-start_time)
start_time = time.time()
model.to(dtype).to(device)
model.train()
print("model to device time:", time.time()-start_time)
start_time = time.time()
data_loader = MicroBatchDataLoader(global_batch_size=GLOBAL_BATCH_SIZE, micro_batch_size=MICRO_BATCH_SIZE, seq_length=SEQ_LEN, dataset_name=dataset_name, tokenizer_name=model_name, grad_acc = grad_acc,num_workers=4, num_proc=4, num_samples=NUM_SAMPLES)
print("init dataloader time:", time.time()-start_time)
tensor_shapes = (data_loader.micro_batch_size, data_loader.seq_length_per_gpu, config.hidden_size)
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
trained_tokens, step = 0, 0
tokens_per_step = data_loader.num_global_micro_batches * data_loader.micro_batch_size * SEQ_LEN * grad_acc
dist.barrier()
@ -284,7 +295,7 @@ if __name__ == "__main__":
#TODO: Add activation checkpointing
#TODO: add gradient accumulation
while trained_tokens < MAX_TOKENS:
while MAX_TOKENS is None or trained_tokens < MAX_TOKENS:
#TODO: Add epoch support
# data_loader.set_epoch(step)
step_start_time = time.time()
@ -307,18 +318,23 @@ if __name__ == "__main__":
step_duration = time.time() - step_start_time
if pgm.process_group_manager.tp_rank == 0 and pgm.process_group_manager.dp_rank == 0 and pgm.process_group_manager.pp_is_last_stage:
if wandb_rank:
print(f"[rank {pgm.process_group_manager.global_rank}] Step: {step}, Loss: {loss:.4f}, "
f"Global batch size: {to_readable_format(tokens_per_step)}, "
f"Tokens/s: {to_readable_format(tokens_per_step / step_duration)}, "
f"Tokens/s/GPU: {to_readable_format(tokens_per_step / step_duration / world_size)}, "
f"Tokens: {to_readable_format(trained_tokens)}/{to_readable_format(MAX_TOKENS)}"
f"Tokens: {to_readable_format(trained_tokens)}{('/' + to_readable_format(MAX_TOKENS)) if MAX_TOKENS else ''}, "
f"Memory usage: {torch.cuda.memory_reserved() / 1e9:.2f}GB"
)
if pgm.process_group_manager.global_rank == 0 and args.use_wandb:
wandb.log({"loss": loss, "trained_tokens": trained_tokens})
if args.use_wandb:
wandb.log({"loss": loss, "tokens_per_step": tokens_per_step, "tokens_per_second": tokens_per_step / step_duration,\
"memory_usage": torch.cuda.memory_reserved() / 1e9, "trained_tokens": trained_tokens})
if step >= total_train_steps:
break
if pgm.process_group_manager.global_rank == 0 and args.use_wandb:
if wandb_rank and args.use_wandb:
wandb.finish()
dist.destroy_process_group()