fix multi-node training by using global rank instead of local rank for dist.init_process_group

This commit is contained in:
ferdinand.mom 2024-11-04 14:40:54 +00:00
parent a44f905254
commit 814e2a96ad

View File

@ -10,6 +10,7 @@ CUDA_DEVICE_MAX_CONNECTIONS=1 torchrun --nproc_per_node=4 --nnodes=1 --
"""
import os
import inspect
import datetime
import json
import time
import argparse
@ -94,9 +95,9 @@ if __name__ == "__main__":
CHECKPOINT_FREQ = config["checkpoint"]["save_frequency"]
local_rank = int(os.environ["LOCAL_RANK"])
global_rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
host = os.environ["MASTER_ADDR"]
port = int(os.environ["MASTER_PORT"])
backend = "gloo" if config["distributed"]["use_cpu"] else "nccl"
assert SEQ_LEN % CP_SIZE == 0, "SEQ_LEN must be divisible by cp_size for Context Parallelism"
@ -108,10 +109,12 @@ if __name__ == "__main__":
else:
device = torch.device("cpu")
dist.init_process_group(rank=local_rank, world_size=world_size, backend=backend, init_method=f"tcp://{host}:{port}")
dist.init_process_group(rank=global_rank, world_size=world_size, backend=backend, init_method=f"env://", timeout=datetime.timedelta(minutes=3))
setup_process_group_manager(tp_size=TP_SIZE, cp_size=CP_SIZE, pp_size=PP_SIZE, dp_size=DP_SIZE)
is_wandb_rank = pgm.process_group_manager.tp_rank == 0 and pgm.process_group_manager.dp_rank == 0 and pgm.process_group_manager.cp_rank == 0 and pgm.process_group_manager.pp_is_last_stage
dist.barrier()
set_all_seed(SEED)
model_config = AutoConfig.from_pretrained(MODEL_NAME)