This commit is contained in:
zzhhjjj 2024-12-19 06:31:03 +00:00
parent e82c719f31
commit d855aead9e
2 changed files with 28 additions and 20 deletions

View File

@ -1,10 +1,10 @@
# picotron
The minimalist & most-hackable repository for pre-training Llama-like models with [4D Parallelism](https://arxiv.org/abs/2407.21783) (Data, Tensor, Pipeline, Context parallel). It is a rewrite of [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) for **educational** purpose.
In the spirit of [NanoGPT](https://github.com/karpathy/nanoGPT), we created Picotron: The minimalist & most-hackable repository for pre-training Llama-like models with [4D Parallelism](https://arxiv.org/abs/2407.21783) (Data, Tensor, Pipeline, Context parallel). It is designed with simplicity and **educational** purposes in mind, making it an excellent tool for learning and experimentation.
![](assets/banière.png)
- The code itself is simple and readable: **train.py, model.py and \[data|tensor|pipeline|context\]_parallel.py are all under 300 lines of code**.
- The code itself is simple and readable: train.py, model.py and \[data|tensor|pipeline|context\]_parallel.py are all under **300** lines of code.
- Performance is not the best but okay-ish, and still under active development. We observed 38% MFU on a LLaMA-2-7B model on 64 H100s and nearly 50% MFU on SmolLM-1.7B model on 8 H100s.
- Performance is not the best but okay-ish, and still under active development. We observed 38% MFU on a LLaMA-2-7B model using 64 H100 GPUs and nearly 50% MFU on the SmolLM-1.7B model with 8 H100 GPUs.
# Install
@ -13,31 +13,31 @@ pip install -e .
```
# Quick start
- Get a HF token [here](https://huggingface.co/settings/tokens) to download models from HuggingFace
- GPU
```sh
# To create a config file in json format
python create_config.py --out_dir tmp --exp_name llama-1B --dp 8 --model_name HuggingFaceTB/SmolLM-1.7B --num_hidden_layers 15 --grad_acc_steps 32 --mbs 4 --seq_len 1024 --hf_token <HF_TOKEN>
```sh
# To create a config file in json format under tmp by default
python create_config.py --out_dir tmp --exp_name llama-1B --dp 8 --model_name HuggingFaceTB/SmolLM-1.7B --num_hidden_layers 15 --grad_acc_steps 32 --mbs 4 --seq_len 1024 --hf_token <HF_TOKEN>
# Locally
torchrun --nproc_per_node 8 train.py --config tmp/llama-1B/config.json
# Locally
torchrun --nproc_per_node 8 train.py --config tmp/llama-1B/config.json
# 3D Parallelism
python create_config.py --out_dir tmp --dp 4 --tp 2 --pp 2 --pp_engine 1f1b --exp_name llama-7B --model_name meta-llama/Llama-2-7b-hf --grad_acc_steps 32 --mbs 4 --seq_len 1024 --hf_token <HF_TOKEN>
# 3D Parallelism
python create_config.py --out_dir tmp --dp 4 --tp 2 --pp 2 --pp_engine 1f1b --exp_name llama-7B --model_name meta-llama/Llama-2-7b-hf --grad_acc_steps 32 --mbs 4 --seq_len 1024 --hf_token <HF_TOKEN>
# Slurm
python submit_slurm_jobs.py --inp_dir tmp/llama-7B --qos high --hf_token <HF_TOKEN>
```
# Slurm
python submit_slurm_jobs.py --inp_dir tmp/llama-7B --qos high --hf_token <HF_TOKEN>
```
- CPU (expect it to be slow)
```sh
# 3D Parallelism on CPU
python create_config.py --out_dir tmp --exp_name llama-1B-cpu --dp 2 --tp 2 --pp 2 --pp_engine 1f1b --model_name HuggingFaceTB/SmolLM-1.7B --num_hidden_layers 5 --grad_acc_steps 2 --mbs 4 --seq_len 128 --hf_token <HF_TOKEN> --use_cpu
```sh
# 3D Parallelism on CPU
python create_config.py --out_dir tmp --exp_name llama-1B-cpu --dp 2 --tp 2 --pp 2 --pp_engine 1f1b --model_name HuggingFaceTB/SmolLM-1.7B --num_hidden_layers 5 --grad_acc_steps 2 --mbs 4 --seq_len 128 --hf_token <HF_TOKEN> --use_cpu
# Locally
torchrun --nproc_per_node 8 train.py --config tmp/llama-1B-cpu/config.json
```
# Locally
torchrun --nproc_per_node 8 train.py --config tmp/llama-1B-cpu/config.json
```
# Acknowledgements

View File

@ -8,6 +8,11 @@ from picotron.data_parallel.bucket import BucketManager
import picotron.process_group_manager as pgm
class DataParallelNaive(nn.Module):
"""
Naive Data Parallelism. Not used in practice. But it is a good starting point to understand how data parallelism works.
It implements a simple all-reduce operation to synchronize gradients across multiple processes.
And `no_sync` context manager to disable gradient synchronization.
"""
def __init__(self, module):
"""
Initializes the DataParallel wrapper for a given module.
@ -55,6 +60,9 @@ class DataParallelNaive(nn.Module):
self.require_backward_grad_sync = True
class DataParallelBucket(nn.Module):
"""
Data Parallelism with gradient grouped into buckets to reduce the communication overhead.
"""
def __init__(self, module, bucket_cap_mb=25, grad_type = torch.float32):
"""
Initialize the DataParallelBucket module.