readme
This commit is contained in:
parent
e82c719f31
commit
d855aead9e
40
README.md
40
README.md
@ -1,10 +1,10 @@
|
||||
# picotron
|
||||
The minimalist & most-hackable repository for pre-training Llama-like models with [4D Parallelism](https://arxiv.org/abs/2407.21783) (Data, Tensor, Pipeline, Context parallel). It is a rewrite of [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) for **educational** purpose.
|
||||
In the spirit of [NanoGPT](https://github.com/karpathy/nanoGPT), we created Picotron: The minimalist & most-hackable repository for pre-training Llama-like models with [4D Parallelism](https://arxiv.org/abs/2407.21783) (Data, Tensor, Pipeline, Context parallel). It is designed with simplicity and **educational** purposes in mind, making it an excellent tool for learning and experimentation.
|
||||
|
||||

|
||||
- The code itself is simple and readable: **train.py, model.py and \[data|tensor|pipeline|context\]_parallel.py are all under 300 lines of code**.
|
||||
- The code itself is simple and readable: train.py, model.py and \[data|tensor|pipeline|context\]_parallel.py are all under **300** lines of code.
|
||||
|
||||
- Performance is not the best but okay-ish, and still under active development. We observed 38% MFU on a LLaMA-2-7B model on 64 H100s and nearly 50% MFU on SmolLM-1.7B model on 8 H100s.
|
||||
- Performance is not the best but okay-ish, and still under active development. We observed 38% MFU on a LLaMA-2-7B model using 64 H100 GPUs and nearly 50% MFU on the SmolLM-1.7B model with 8 H100 GPUs.
|
||||
|
||||
# Install
|
||||
|
||||
@ -13,31 +13,31 @@ pip install -e .
|
||||
```
|
||||
|
||||
# Quick start
|
||||
- Get a HF token [here](https://huggingface.co/settings/tokens) to download models from HuggingFace
|
||||
|
||||
- GPU
|
||||
```sh
|
||||
# To create a config file in json format
|
||||
python create_config.py --out_dir tmp --exp_name llama-1B --dp 8 --model_name HuggingFaceTB/SmolLM-1.7B --num_hidden_layers 15 --grad_acc_steps 32 --mbs 4 --seq_len 1024 --hf_token <HF_TOKEN>
|
||||
```sh
|
||||
# To create a config file in json format under tmp by default
|
||||
python create_config.py --out_dir tmp --exp_name llama-1B --dp 8 --model_name HuggingFaceTB/SmolLM-1.7B --num_hidden_layers 15 --grad_acc_steps 32 --mbs 4 --seq_len 1024 --hf_token <HF_TOKEN>
|
||||
|
||||
# Locally
|
||||
torchrun --nproc_per_node 8 train.py --config tmp/llama-1B/config.json
|
||||
# Locally
|
||||
torchrun --nproc_per_node 8 train.py --config tmp/llama-1B/config.json
|
||||
|
||||
# 3D Parallelism
|
||||
python create_config.py --out_dir tmp --dp 4 --tp 2 --pp 2 --pp_engine 1f1b --exp_name llama-7B --model_name meta-llama/Llama-2-7b-hf --grad_acc_steps 32 --mbs 4 --seq_len 1024 --hf_token <HF_TOKEN>
|
||||
# 3D Parallelism
|
||||
python create_config.py --out_dir tmp --dp 4 --tp 2 --pp 2 --pp_engine 1f1b --exp_name llama-7B --model_name meta-llama/Llama-2-7b-hf --grad_acc_steps 32 --mbs 4 --seq_len 1024 --hf_token <HF_TOKEN>
|
||||
|
||||
# Slurm
|
||||
python submit_slurm_jobs.py --inp_dir tmp/llama-7B --qos high --hf_token <HF_TOKEN>
|
||||
```
|
||||
# Slurm
|
||||
python submit_slurm_jobs.py --inp_dir tmp/llama-7B --qos high --hf_token <HF_TOKEN>
|
||||
```
|
||||
|
||||
- CPU (expect it to be slow)
|
||||
```sh
|
||||
# 3D Parallelism on CPU
|
||||
python create_config.py --out_dir tmp --exp_name llama-1B-cpu --dp 2 --tp 2 --pp 2 --pp_engine 1f1b --model_name HuggingFaceTB/SmolLM-1.7B --num_hidden_layers 5 --grad_acc_steps 2 --mbs 4 --seq_len 128 --hf_token <HF_TOKEN> --use_cpu
|
||||
|
||||
```sh
|
||||
# 3D Parallelism on CPU
|
||||
python create_config.py --out_dir tmp --exp_name llama-1B-cpu --dp 2 --tp 2 --pp 2 --pp_engine 1f1b --model_name HuggingFaceTB/SmolLM-1.7B --num_hidden_layers 5 --grad_acc_steps 2 --mbs 4 --seq_len 128 --hf_token <HF_TOKEN> --use_cpu
|
||||
|
||||
# Locally
|
||||
torchrun --nproc_per_node 8 train.py --config tmp/llama-1B-cpu/config.json
|
||||
```
|
||||
# Locally
|
||||
torchrun --nproc_per_node 8 train.py --config tmp/llama-1B-cpu/config.json
|
||||
```
|
||||
|
||||
# Acknowledgements
|
||||
|
||||
|
||||
@ -8,6 +8,11 @@ from picotron.data_parallel.bucket import BucketManager
|
||||
import picotron.process_group_manager as pgm
|
||||
|
||||
class DataParallelNaive(nn.Module):
|
||||
"""
|
||||
Naive Data Parallelism. Not used in practice. But it is a good starting point to understand how data parallelism works.
|
||||
It implements a simple all-reduce operation to synchronize gradients across multiple processes.
|
||||
And `no_sync` context manager to disable gradient synchronization.
|
||||
"""
|
||||
def __init__(self, module):
|
||||
"""
|
||||
Initializes the DataParallel wrapper for a given module.
|
||||
@ -55,6 +60,9 @@ class DataParallelNaive(nn.Module):
|
||||
self.require_backward_grad_sync = True
|
||||
|
||||
class DataParallelBucket(nn.Module):
|
||||
"""
|
||||
Data Parallelism with gradient grouped into buckets to reduce the communication overhead.
|
||||
"""
|
||||
def __init__(self, module, bucket_cap_mb=25, grad_type = torch.float32):
|
||||
"""
|
||||
Initialize the DataParallelBucket module.
|
||||
|
||||
Loading…
Reference in New Issue
Block a user