add naive DP

This commit is contained in:
ferdinand.mom 2024-09-25 12:36:22 +00:00
parent 7ba1383ebb
commit e2c0747fe3
4 changed files with 80 additions and 29 deletions

24
data_parallel.py Normal file
View File

@ -0,0 +1,24 @@
import torch.distributed as dist
import torch.nn as nn
import parallel_context as pc
class DataParallel(nn.Module):
def __init__(self, model):
#TODO: Add Zero1
#TODO: Interleave all_reduce
super().__init__()
self.model = model
self.dp_world_size = pc.parallel_context.dp_world_size
self.dp_rank = pc.parallel_context.dp_rank
def forward(self, *args, **kwargs):
return self.model(*args, **kwargs)
def backward(self, input_tensor, output_tensor, output_tensor_grad):
return self.model.backward(input_tensor, output_tensor, output_tensor_grad)
def all_reduce_gradients(self):
for param in self.model.parameters():
if param.grad is not None:
dist.all_reduce(param.grad, op=dist.ReduceOp.AVG, group=pc.parallel_context.dp_group)

View File

@ -2,7 +2,7 @@
import os
import argparse
import torch, torch.distributed as dist
from transformers import AutoTokenizer
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM,AutoTokenizer
from utils import set_all_seed
import parallel_context as pc
@ -10,18 +10,18 @@ from parallel_context import setup_parallel_context
from pipeline_parallel import PipelineParallel
from distributed_primtives import communicate
def run_one_inference_step(model, batch, device) -> torch.Tensor:
def run_one_inference_step(model, batch, device, config) -> torch.Tensor:
if pc.parallel_context.pp_world_size == 1:
return model.forward(batch, device)
batch_size = batch["input_ids"].shape[0]
seq_len = batch["input_ids"].shape[1]
tensor_shapes = (batch_size, seq_len, model.config.hidden_size)
tensor_shapes = (batch_size, seq_len, config.hidden_size)
# Preallocate memory for output logits.
logits = None
if pc.parallel_context.pp_is_last_stage:
logits = torch.empty((batch_size, seq_len, int(model.config.vocab_size)), dtype=torch.float32, device=device)
logits = torch.empty((batch_size, seq_len, int(config.vocab_size)), dtype=torch.float32, device=device)
recv_buffer = communicate(operation="recv_forward", shapes=tensor_shapes, dtype=torch.float32)
@ -53,18 +53,22 @@ if __name__ == "__main__":
device = torch.device("cuda", local_rank)
setup_parallel_context(tp_size=1, pp_size=args.pp_size, dp_size=1)
set_all_seed(seed=42)
model = PipelineParallel("HuggingFaceTB/SmolLM-360M-Instruct").to(device)
model_name = "HuggingFaceTB/SmolLM-360M-Instruct"
config = AutoConfig.from_pretrained(model_name)
base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
model = PipelineParallel(base_model, config).to(device)
del base_model
model.eval()
# Tokenize the input
prompts = [
"My name is",
# "How old are you ?",
# "What is your favorite color?",
"How old are you ?",
"What is your favorite color?",
]
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-360M-Instruct")
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
@ -85,7 +89,7 @@ if __name__ == "__main__":
"hidden_states": None,
}
logits = run_one_inference_step(model, batch_prompts, device)
logits = run_one_inference_step(model, batch_prompts, device, config)
# Sample new token
if pc.parallel_context.pp_is_last_stage:

View File

@ -1,4 +1,3 @@
from transformers import AutoConfig, AutoModelForCausalLM
import parallel_context as pc
from distributed_primtives import communicate, bidirectional_communicate
import torch, torch.nn as nn, torch.nn.functional as F
@ -11,16 +10,13 @@ def reduce_loss_across_dp_ranks(loss, device):
return reduced_loss.item()
class PipelineParallel(nn.Module):
def __init__(self, model_name):
def __init__(self, model, config):
super().__init__()
self.config = AutoConfig.from_pretrained(model_name)
base_model = AutoModelForCausalLM.from_pretrained(model_name, config=self.config)
layer_distribution = self.distribute_layers(self.config.num_hidden_layers)
self.embed_tokens = base_model.model.embed_tokens if pc.parallel_context.pp_is_first_stage else nn.Identity()
self.decoder_layers = nn.ModuleDict({str(i): base_model.model.layers[i] for i in layer_distribution})
self.norm = base_model.model.norm if pc.parallel_context.pp_is_last_stage else nn.Identity()
self.lm_head = base_model.lm_head if pc.parallel_context.pp_is_last_stage else nn.Identity()
del base_model
layer_distribution = self.distribute_layers(config.num_hidden_layers)
self.embed_tokens = model.model.embed_tokens if pc.parallel_context.pp_is_first_stage else nn.Identity()
self.decoder_layers = nn.ModuleDict({str(i): model.model.layers[i] for i in layer_distribution})
self.norm = model.model.norm if pc.parallel_context.pp_is_last_stage else nn.Identity()
self.lm_head = model.lm_head if pc.parallel_context.pp_is_last_stage else nn.Identity()
def distribute_layers(self, num_layers):
layers_per_gpu = [num_layers // pc.parallel_context.pp_world_size + (1 if i < num_layers % pc.parallel_context.pp_world_size else 0) for i in range(pc.parallel_context.pp_world_size)]
@ -67,6 +63,9 @@ def pipeline_parallel_afab(model, data_loader, tensor_shapes, device):
input_tensor_grad = model.backward(input_tensor, output_tensor, output_tensor_grad)
communicate(operation='send_backward', tensor=input_tensor_grad)
# Average gradient across DP ranks
model.all_reduce_gradients()
logging_loss = reduce_loss_across_dp_ranks(logging_loss, device)
return logging_loss
@ -115,5 +114,8 @@ def pipeline_parallel_1f1b(model, data_loader, tensor_shapes, device):
input_tensor_grad = model.backward(input_tensor, output_tensor, output_tensor_grad)
communicate(operation='send_backward', tensor=input_tensor_grad)
# Average gradient across DP ranks
model.all_reduce_gradients()
logging_loss = reduce_loss_across_dp_ranks(logging_loss, device)
return logging_loss

View File

@ -4,18 +4,20 @@ import torch, torch.distributed as dist
from torch.optim import AdamW
from torch.utils.data import DataLoader, DistributedSampler
from datasets import load_dataset
from transformers import AutoTokenizer
from transformers import AutoConfig, AutoModelForCausalLM,AutoTokenizer
import argparse
import parallel_context as pc
from utils import set_all_seed, display_parallelism_grid
from parallel_context import setup_parallel_context
from pipeline_parallel import pipeline_parallel_1f1b, pipeline_parallel_afab, PipelineParallel
from data_parallel import DataParallel
class MicroBatchDataLoader(DataLoader):
def __init__(self, global_batch_size, micro_batch_size, data_parallel_size, seq_length, dataset_name, tokenizer_name, split="train", num_samples=None):
self.global_batch_size, self.micro_batch_size, self.data_parallel_size, self.seq_length = global_batch_size, micro_batch_size, data_parallel_size, seq_length
self.local_batch_size = self.global_batch_size // self.data_parallel_size
def __init__(self, global_batch_size, micro_batch_size, seq_length, dataset_name, tokenizer_name, split="train", num_samples=None):
self.global_batch_size, self.micro_batch_size, self.seq_length = global_batch_size, micro_batch_size, seq_length
self.local_batch_size = self.global_batch_size // pc.parallel_context.dp_world_size
self.num_local_micro_batches = self.local_batch_size // self.micro_batch_size
self.num_global_micro_batches = self.global_batch_size // self.micro_batch_size
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
@ -23,7 +25,13 @@ class MicroBatchDataLoader(DataLoader):
if num_samples: self.dataset = self.dataset.select(range(min(num_samples, len(self.dataset))))
dist.barrier()
self.dataset = self.dataset.map(lambda examples: self.tokenizer(examples["text"], padding="max_length", truncation=True, max_length=self.seq_length + 1, return_special_tokens_mask=False), batched=True, remove_columns=self.dataset.column_names).with_format("torch", columns=["input_ids"])
super().__init__(self.dataset, batch_size=micro_batch_size, collate_fn=self.collate_batch, pin_memory=True, num_workers=3, sampler=DistributedSampler(self.dataset, num_replicas=data_parallel_size, rank=0, shuffle=False), shuffle=False)
self.sampler = DistributedSampler(self.dataset, num_replicas=pc.parallel_context.dp_world_size, rank=pc.parallel_context.dp_rank, shuffle=False)
super().__init__(self.dataset, batch_size=micro_batch_size, collate_fn=self.collate_batch, pin_memory=True, num_workers=3, sampler=self.sampler, shuffle=False)
def set_epoch(self, epoch):
self.sampler.set_epoch(epoch)
def collate_batch(self, batch_data):
batch_input_ids = torch.stack([item['input_ids'] for item in batch_data])
@ -54,14 +62,27 @@ if __name__ == "__main__":
display_parallelism_grid()
set_all_seed(seed=42)
model = PipelineParallel("HuggingFaceTB/SmolLM-360M-Instruct").to(device)
data_loader = MicroBatchDataLoader(GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, 1, SEQ_LEN, "roneneldan/TinyStories", "HuggingFaceTB/SmolLM-360M-Instruct", num_samples=NUM_SAMPLES)
tensor_shapes = (SEQ_LEN, data_loader.micro_batch_size, model.config.hidden_size)
model_name = "HuggingFaceTB/SmolLM-360M-Instruct"
config = AutoConfig.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
model = PipelineParallel(model, config).to(device)
model = DataParallel(model).to(device)
model.train()
data_loader = MicroBatchDataLoader(GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, SEQ_LEN, "roneneldan/TinyStories", model_name, num_samples=NUM_SAMPLES)
tensor_shapes = (SEQ_LEN, data_loader.micro_batch_size, config.hidden_size)
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
trained_tokens, step = 0, 0
tokens_per_step = data_loader.num_global_micro_batches * data_loader.micro_batch_size * SEQ_LEN
dist.barrier()
while trained_tokens < MAX_TOKENS:
while trained_tokens < MAX_TOKENS:
data_loader.set_epoch(step)
optimizer.zero_grad()
loss = pipeline_parallel_afab(model, data_loader, tensor_shapes, device)
optimizer.step()