This commit is contained in:
zzhhjjj 2024-10-29 21:03:58 +00:00 committed by ferdinand.mom
parent c7a3fb016a
commit f1f6915ba1

View File

@ -66,6 +66,7 @@ def train_step_pipeline_1f1b(model, data_loader, tensor_shapes, device, dtype):
num_warmup_microbatches = min(pgm.process_group_manager.pp_world_size - pgm.process_group_manager.pp_rank - 1, data_loader.num_local_micro_batches)
num_microbatches_remaining = data_loader.num_local_micro_batches - num_warmup_microbatches
logging_loss, input_tensors, output_tensors = 0.0, [], []
requires_grad_sync = pgm.process_group_manager.cp_dp_world_size > 1 # we disable gradient synchronization for 1F1B, except for the last microbatch
def _forward_step(input_tensor):
batch = next(data_loader)
@ -90,6 +91,8 @@ def train_step_pipeline_1f1b(model, data_loader, tensor_shapes, device, dtype):
input_tensor = pipeline_communicate(operation='recv_forward', shapes=tensor_shapes, device=device, dtype=dtype)
for i in range(num_microbatches_remaining): # 1F1B steady state
if requires_grad_sync:
model.require_backward_grad_sync = False # we only synchronize gradients at the last microbatch
output_tensor = _forward_step(input_tensor)
output_tensor_grad = bidirectional_pipeline_communicate(operation='send_fwd_recv_bwd', send_tensor=output_tensor, recv_shapes=tensor_shapes, device=device, dtype=dtype)
input_tensors.append(input_tensor)
@ -102,7 +105,9 @@ def train_step_pipeline_1f1b(model, data_loader, tensor_shapes, device, dtype):
else:
input_tensor = bidirectional_pipeline_communicate(operation='send_bwd_recv_fwd', send_tensor=input_tensor_grad, recv_shapes=tensor_shapes, device=device, dtype=dtype)
for _ in range(num_warmup_microbatches): # Cooldown backward passes
for i in range(num_warmup_microbatches): # Cooldown backward passes
if requires_grad_sync:
model.require_backward_grad_sync = (i == num_warmup_microbatches - 1) # we synchronize gradients at the last microbatch
input_tensor, output_tensor = input_tensors.pop(0), output_tensors.pop(0)
output_tensor_grad = pipeline_communicate(operation='recv_backward', shapes=tensor_shapes, device=device, dtype=dtype)
input_tensor_grad = model.backward(input_tensor, output_tensor, output_tensor_grad)