#VERBOSE=0 torchrun --nproc_per_node 4 --master_addr localhost --master_port 25500 train.py --pp_size 2 --dp_size 2 import os import torch.nn.functional as F import torch, torch.distributed as dist from torch.optim import AdamW from transformers import AutoConfig, AutoModelForCausalLM import argparse import parallel_context as pc from utils import set_all_seed, display_parallelism_grid from parallel_context import setup_parallel_context from pipeline_parallel import train_step_pipeline_1f1b, train_step_pipeline_afab, PipelineParallel from data_parallel import DataParallel from dataset import MicroBatchDataLoader def train_step(model, data_loader, device): total_loss = 0.0 for _ in range(data_loader.num_local_micro_batches): batch = next(iter(data_loader)) input_ids = batch["input_ids"].to(device) position_ids = batch["position_index"].to(device) target_ids = batch["target_ids"].to(device) outputs = model(input_ids=input_ids, position_ids=position_ids) logits = outputs.logits # Use your suggested cross_entropy calculation loss = F.cross_entropy(logits.transpose(1, 2), target_ids, reduction='mean') loss.backward() total_loss += loss.item() avg_loss = total_loss / data_loader.num_local_micro_batches return avg_loss if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--tp_size", type=int, default=1) parser.add_argument("--pp_size", type=int, default=1) parser.add_argument("--dp_size", type=int, default=1) args = parser.parse_args() os.environ["TOKENIZERS_PARALLELISM"] = "false" local_rank, world_size = int(os.environ["LOCAL_RANK"]), int(os.environ["WORLD_SIZE"]) host, port = os.environ["MASTER_ADDR"], int(os.environ["MASTER_PORT"]) SEQ_LEN, GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, LEARNING_RATE, NUM_SAMPLES, MAX_TOKENS = 10, 6, 2, 1e-4, 20, 1800 dist.init_process_group(rank=local_rank, world_size=world_size, backend="nccl", init_method=f"tcp://{host}:{port}") torch.cuda.set_device(local_rank) device = torch.device("cuda", local_rank) setup_parallel_context(tp_size=args.tp_size, pp_size=args.pp_size, dp_size=args.dp_size) if pc.parallel_context.global_rank == local_rank: display_parallelism_grid() set_all_seed(seed=42) model_name = "HuggingFaceTB/SmolLM-360M-Instruct" config = AutoConfig.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, config=config).to(device) if pc.parallel_context.pp_world_size > 1: model = PipelineParallel(model, config).to(device) if pc.parallel_context.dp_world_size > 1: model = DataParallel(model, config).to(device) model.train() data_loader = MicroBatchDataLoader(GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, SEQ_LEN, "roneneldan/TinyStories", model_name, num_samples=NUM_SAMPLES) tensor_shapes = (SEQ_LEN, data_loader.micro_batch_size, config.hidden_size) optimizer = AdamW(model.parameters(), lr=LEARNING_RATE) trained_tokens, step = 0, 0 tokens_per_step = data_loader.num_global_micro_batches * data_loader.micro_batch_size * SEQ_LEN dist.barrier() #TODO: find a way to setup reference model training #TODO: Add activation checkpointing #TODO: add gradient accumulation while trained_tokens < MAX_TOKENS: data_loader.set_epoch(step) optimizer.zero_grad() if pc.parallel_context.pp_world_size > 1: loss = train_step_pipeline_afab(model, data_loader, tensor_shapes, device) else: loss = train_step(model, data_loader, device) if pc.parallel_context.dp_world_size > 1: # Average gradient across DP ranks model.all_reduce_gradients() optimizer.step() trained_tokens += tokens_per_step step += 1 #NOTE(fmom): change later to log on rank 0 (g00) everytime ? if pc.parallel_context.pp_is_last_stage and pc.parallel_context.global_rank == pc.parallel_context.tp_first_rank and pc.parallel_context.global_rank == pc.parallel_context.dp_first_rank: print(f"[rank {pc.parallel_context.global_rank}] Step: {step}, Loss: {loss:.4f}, Tokens: {trained_tokens}/{MAX_TOKENS}") dist.destroy_process_group()