picotron/train.py
2024-10-10 15:12:14 +00:00

204 lines
8.9 KiB
Python

#VERBOSE=0 torchrun --nproc_per_node 4 --master_addr localhost --master_port 25500 train.py --pp_size 2 --dp_size 2
import os
import torch.nn.functional as F
import torch, torch.distributed as dist
from torch.optim import AdamW
from transformers import AutoConfig
from transformers import AutoTokenizer
from torch.utils.data import DataLoader, DistributedSampler
from datasets import load_dataset
import argparse
import distributed.process_group_manager as pgm
from utils import set_all_seed, display_parallelism_grid, print
from distributed.process_group_manager import setup_process_group_manager
from parallel.pipeline_parallel import train_step_pipeline_1f1b, train_step_pipeline_afab, PipelineParallel
from parallel.data_parallel import DataParallel
from parallel.context_parallel import ContextParallel
from model import Llama
from dataset import MicroBatchDataLoader
import wandb
class MicroBatchDataLoader(DataLoader):
def __init__(self, global_batch_size, micro_batch_size, seq_length, dataset_name, tokenizer_name, split="train", num_samples=None):
self.global_batch_size, self.micro_batch_size, self.seq_length = global_batch_size, micro_batch_size, seq_length
self.local_batch_size = self.global_batch_size // pgm.process_group_manager.dp_world_size
self.num_local_micro_batches = self.local_batch_size // self.micro_batch_size
self.num_global_micro_batches = self.global_batch_size // self.micro_batch_size
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
self.dataset = load_dataset(dataset_name, split=split)
if num_samples: self.dataset = self.dataset.select(range(min(num_samples, len(self.dataset))))
dist.barrier()
self.dataset = self.dataset.map(lambda examples: self.tokenizer(examples["text"], padding="max_length", truncation=True, max_length=self.seq_length + 1, return_special_tokens_mask=False), batched=True, remove_columns=self.dataset.column_names).with_format("torch", columns=["input_ids"])
self.sampler = DistributedSampler(self.dataset, num_replicas=pgm.process_group_manager.dp_world_size, rank=pgm.process_group_manager.dp_rank, shuffle=False)
super().__init__(self.dataset, batch_size=micro_batch_size, collate_fn=self.collate_batch, pin_memory=True, num_workers=3, sampler=self.sampler, shuffle=False)
def set_epoch(self, epoch):
self.sampler.set_epoch(epoch)
def collate_batch(self, batch_data):
batch_input_ids = torch.stack([item['input_ids'] for item in batch_data])
batch_size, seq_len = batch_input_ids.shape
return {"input_ids": batch_input_ids[:, :-1].T.contiguous(), "target_ids": batch_input_ids[:, 1:].T.contiguous(), "position_index": torch.arange(seq_len-1, dtype=torch.long).unsqueeze(1).expand(-1, batch_size).contiguous(), "attn_mask": torch.tril(torch.ones((seq_len-1, seq_len-1), dtype=torch.bool)).unsqueeze(0).expand(batch_size, -1, -1).contiguous(), "hidden_states": None}
def train_step(model, data_loader, device):
total_loss = 0.0
for _ in range(data_loader.num_local_micro_batches):
batch = next(iter(data_loader))
input_ids = batch["input_ids"].to(device)
position_ids = batch["position_index"].to(device)
target_ids = batch["target_ids"].to(device)
outputs = model(input_ids=input_ids, position_ids=position_ids)
logits = outputs.logits
# Use your suggested cross_entropy calculation
loss = F.cross_entropy(logits.transpose(1, 2), target_ids, reduction='mean')
loss.backward()
total_loss += loss.item()
avg_loss = total_loss / data_loader.num_local_micro_batches
return avg_loss
def all_reduce_grads_across_dp_cp_ranks():
for param in model.parameters():
if param.grad is not None:
# Average the gradients across all DP & CP ranks
param.grad /= pgm.process_group_manager.cp_dp_world_size
dist.all_reduce(param.grad, op=dist.ReduceOp.SUM, group=pgm.process_group_manager.cp_dp_group)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--tp_size", type=int, default=1)
parser.add_argument("--cp_size", type=int, default=1)
parser.add_argument("--pp_size", type=int, default=1)
parser.add_argument("--dp_size", type=int, default=1)
parser.add_argument("--use_wandb", action="store_true", default=False)
parser.add_argument("--use_cpu", action="store_true", default=False)
parser.add_argument("--master_addr", type=str, default="localhost")
parser.add_argument("--master_port", type=int, default=29500)
args = parser.parse_args()
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
local_rank = int(os.environ["LOCAL_RANK"])
world_size = int(os.environ["WORLD_SIZE"])
host = os.environ["MASTER_ADDR"]
port = int(os.environ["MASTER_PORT"])
SEQ_LEN, GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, LEARNING_RATE, NUM_SAMPLES, MAX_TOKENS, SEED = 10, 6, 2, 1e-4, 20, 1800, 42
backend = "gloo" if args.use_cpu else "nccl"
if backend == "nccl":
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
else:
device = torch.device("cpu")
dist.init_process_group(rank=local_rank, world_size=world_size, backend=backend, init_method=f"tcp://{host}:{port}")
setup_process_group_manager(tp_size=args.tp_size, cp_size=args.cp_size, pp_size=args.pp_size, dp_size=args.dp_size)
if pgm.process_group_manager.global_rank == 0:
display_parallelism_grid()
set_all_seed(SEED)
model_name = "HuggingFaceTB/SmolLM-360M-Instruct"
dataset_name = "roneneldan/TinyStories"
config = AutoConfig.from_pretrained(model_name)
if pgm.process_group_manager.global_rank == 0 and args.use_wandb:
wandb.init(
project="picotron",
name=f"test_convergence_{pgm.process_group_manager}",
config={
"tensor_parallel_size": pgm.process_group_manager.tp_size,
"pipeline_parallel_size": pgm.process_group_manager.pp_size,
"data_parallel_size": pgm.process_group_manager.dp_size,
"model": model_name,
"dataset": dataset_name,
"max_tokens": MAX_TOKENS,
"learning_rate": LEARNING_RATE,
"seed": SEED,
"micro_batch_size": MICRO_BATCH_SIZE,
"global_batch_size": GLOBAL_BATCH_SIZE,
},
)
#TODO: find a better way (should need to specify model_name + path to .pth)
model_name = "HuggingFaceTB/SmolLM-360M-Instruct"
config = AutoConfig.from_pretrained(model_name)
model = Llama(
config=config,
device=device,
).to(device)
model.load_state_dict(torch.load("smollm.pth"))
if pgm.process_group_manager.cp_size > 1:
model = ContextParallel(model, config).to(device)
if pgm.process_group_manager.pp_world_size > 1:
model = PipelineParallel(model, config).to(device)
if pgm.process_group_manager.dp_world_size > 1:
model = DataParallel(model, config).to(device)
model.train()
data_loader = MicroBatchDataLoader(GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, SEQ_LEN, dataset_name, model_name, num_samples=NUM_SAMPLES)
tensor_shapes = (SEQ_LEN, data_loader.micro_batch_size, config.hidden_size)
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
trained_tokens, step = 0, 0
tokens_per_step = data_loader.num_global_micro_batches * data_loader.micro_batch_size * SEQ_LEN
dist.barrier()
#TODO: Add Context Parallelism
#TODO: Double-check consumed tokens after each steps (for example, MICRO_BATCH_SIZE=2 and using only dp_size=4, num_local_micro_batches=0 => division by 0)
#TODO: Check convergence
#TODO: Try multi-nodes
#TODO: Add activation checkpointing
#TODO: add gradient accumulation
while trained_tokens < MAX_TOKENS:
data_loader.set_epoch(step)
optimizer.zero_grad()
if pgm.process_group_manager.pp_world_size > 1:
loss = train_step_pipeline_afab(model, data_loader, tensor_shapes, device)
else:
loss = train_step(model, data_loader, device)
if pgm.process_group_manager.dp_world_size > 1 or pgm.process_group_manager.cp_world_size > 1:
all_reduce_grads_across_dp_cp_ranks()
optimizer.step()
trained_tokens += tokens_per_step
step += 1
if pgm.process_group_manager.global_rank == 0:
print(f"[rank {pgm.process_group_manager.global_rank}] Step: {step}, Loss: {loss:.4f}, Tokens: {trained_tokens}/{MAX_TOKENS}")
if pgm.process_group_manager.global_rank == 0 and args.use_wandb:
wandb.log({"loss": loss, "trained_tokens": trained_tokens})
if pgm.process_group_manager.global_rank == 0 and args.use_wandb:
wandb.finish()
dist.destroy_process_group()