picotron/model.py

213 lines
12 KiB
Python

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from src.parallel.context_parallel import ring_attention, update_rope_for_context_parallel
from flash_attn.flash_attn_interface import flash_attn_func
from flash_attn.layers.rotary import apply_rotary_emb
from flash_attn.ops.triton.layer_norm import layer_norm_fn
import src.distributed.process_group_manager as pgm
def apply_rotary_pos_emb(x, cos, sin):
#TODO: Maybe do class RotaryEmbedding(nn.Module) later
batch_size, num_head, seq_length, head_dim = x.size()
x1 = x[..., : head_dim // 2]
x2 = x[..., head_dim // 2 :]
rotate_half = torch.cat([-x2, x1], dim=-1)
x = x * cos + rotate_half * sin
return x
def get_cos_sin(seq_length, head_dim, base=500000.0):
assert head_dim%2==0
# Results on CUDA and CPU are different even with the same formula, To match transformers implementation. frequency should be computed on CPU
theta = 1.0 / (base ** (torch.arange(0, head_dim, 2, dtype=torch.int64).float().to('cpu') / head_dim))
dtype = torch.bfloat16 if os.getenv('DTYPE', 'bfloat16') == 'bfloat16' else torch.float32
device = torch.device('cuda') if os.getenv('DEVICE', 'cuda') == 'cuda' else torch.device('cpu')
position = torch.arange(seq_length).to(device).unsqueeze(1).float() # [seq_length, 1]
# To match transformers implementation. m * theta should be computed on GPU
theta = theta.to(device)
return torch.cos(position.float()*theta.float()).to(dtype).repeat(1,2), torch.sin(position.float()*theta.float()).to(dtype).repeat(1,2) # [seq_length, head_dim], [seq_length, head_dim]
def flash_attention(q, k, v, causal = True):
q = q.permute(0, 2, 1, 3) # [batch_size, seq_length, num_head , head_dim]
k = k.permute(0, 2, 1, 3) # [batch_size, seq_length, num_head , head_dim]
v = v.permute(0, 2, 1, 3) # [batch_size, seq_length, num_head , head_dim]
return flash_attn_func(q, k, v, causal=causal)
class TritonRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(hidden_size))
self.register_parameter("bias", None)
def forward(
self, hidden_states, residual=None, dropout_p=0.0, prenorm=False, residual_in_fp32=False, return_dropout_mask=False
):
return layer_norm_fn(
hidden_states,
self.weight,
None,
residual=residual,
eps=self.eps,
dropout_p=dropout_p,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32,
is_rms_norm=True,
return_dropout_mask=return_dropout_mask,
)
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class Attention(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.num_key_values = config.num_key_value_heads
self.head_dim = self.hidden_size//self.num_heads
assert config.num_attention_heads % pgm.process_group_manager.tp_world_size == 0, "num_attention_heads should be divisible by tp world size"
assert config.num_key_value_heads % pgm.process_group_manager.tp_world_size == 0, "num_key_value_heads should be divisible by tp world size"
self.num_local_heads = config.num_attention_heads // pgm.process_group_manager.tp_world_size # TP parallelism
self.num_local_kv_heads = config.num_key_value_heads // pgm.process_group_manager.tp_world_size # TP parallelism
self.q_proj = nn.Linear(config.hidden_size, self.num_heads*self.head_dim, bias=False)
self.k_proj = nn.Linear(config.hidden_size, self.num_key_values*self.head_dim, bias=False)
self.v_proj = nn.Linear(config.hidden_size, self.num_key_values*self.head_dim, bias=False)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
self.layer_idx = layer_idx
## TODO support mask
def forward(self, x, cos, sin, attention_mask=None, position_ids=None):
batch_size, seq_length, hidden_dim = x.size()
q = self.q_proj(x) # [batch_size, seq_length, num_heads*head_dim]
k = self.k_proj(x) # [batch_size, seq_length, num_key_values*head_dim]
v = self.v_proj(x) # [batch_size, seq_length, num_key_values*head_dim]
if os.getenv('FLASH_ATTEN', '1') != '1':
q = q.view(batch_size, seq_length, self.num_local_heads, self.head_dim).transpose(1, 2) # [batch_size, num_heads, seq_length, head_dim]
k = k.view(batch_size, seq_length, self.num_local_kv_heads, self.head_dim).transpose(1, 2) # [batch_size, num_key_values, seq_length, head_dim]
v = v.view(batch_size, seq_length, self.num_local_kv_heads, self.head_dim).transpose(1, 2) # [batch_size, num_key_values, seq_length, head_dim]
q = apply_rotary_pos_emb(q, cos, sin)
k = apply_rotary_pos_emb(k, cos, sin)
else:
q = q.view(batch_size, seq_length, self.num_local_heads, self.head_dim) # [batch_size, seq_length, num_heads, head_dim]
k = k.view(batch_size, seq_length, self.num_local_kv_heads, self.head_dim) # [batch_size, seq_length, num_key_values, head_dim]
q = apply_rotary_emb(q,cos[:, :self.head_dim // 2], sin[:, :self.head_dim // 2],interleaved=False) # [batch_size, seq_length, num_heads, head_dim]
k = apply_rotary_emb(k,cos[:, :self.head_dim // 2], sin[:, :self.head_dim // 2],interleaved=False) # [batch_size, seq_length, num_key_values, head_dim]
q = q.transpose(1, 2) # [batch_size, num_heads, seq_length, head_dim]
k = k.transpose(1, 2) # [batch_size, num_key_values, seq_length, head_dim]
v = v.view(batch_size, seq_length, self.num_local_kv_heads, self.head_dim).transpose(1,2) # [batch_size, num_key_values, seq_length, head_dim]
k = k.repeat_interleave(self.num_local_heads // self.num_local_kv_heads, dim=1) # [batch_size, num_heads, seq_length, head_dim]
v = v.repeat_interleave(self.num_local_heads // self.num_local_kv_heads, dim=1) # [batch_size, num_heads, seq_length, head_dim]
causal = True if q.size(2) == k.size(2) else False # During decoding phase. The lenghth of q is usually 1.
if pgm.process_group_manager.cp_world_size > 1:
# Ring attention for context parallelism
sm_scale = 1.0 / (q.size(-1) ** 0.5)
out = ring_attention(q, k, v, sm_scale, causal).transpose(1, 2) # [batch_size, seq_length, num_heads, head_dim]
elif os.getenv('FLASH_ATTEN', '1') == '1':
# flash attention, this is faster!
out = flash_attention(q, k, v, causal = causal) # [batch_size, seq_length, num_heads, head_dim]
else:
# Pytorch scaled dot product attention
out = F.scaled_dot_product_attention(q, k, v, is_causal=causal) # [batch_size, num_heads, seq_length, head_dim]
out = out.transpose(1, 2) # [batch_size, seq_length, num_heads, head_dim]
out = out.reshape(batch_size, seq_length, self.num_local_heads * self.head_dim) # [batch_size, seq_length, hidden_dim]
out = self.out_proj(out) # [batch_size, seq_length, hidden_dim]
return out
class MLP(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
def forward(self, x):
#TODO: dont do single line operations as it is harder to debug
return self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x))
class DecoderLayer(nn.Module):
# RMSNorm -> Attention -> Residual -> RMSNorm -> MLP -> Residual
def __init__(self, config, layer_idx):
super().__init__()
RMSNorm = LlamaRMSNorm if os.getenv('FLASH_ATTEN', '1') != '1' else TritonRMSNorm
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.attention = Attention(config, layer_idx = layer_idx)
self.mlp = MLP(config)
self.layer_idx = layer_idx
head_dim = config.hidden_size // config.num_attention_heads
self.cos, self.sin = get_cos_sin(config.max_position_embeddings, head_dim=head_dim , base=config.rope_theta) # [max_position_embeddings, head_dim]
# For context parallelism, we split the input. We need to get the correct cos and sin for each split
self.cos, self.sin = update_rope_for_context_parallel(self.cos, self.sin)
def forward(self, x, attention_mask = None, position_ids = None):
#TODO: Use the default position_ids for RoPE during training. If we have time, work on generation
cos, sin = self.cos, self.sin
x = x + self.attention(self.input_layernorm(x), cos, sin, attention_mask, position_ids) # Attention
x = x + self.mlp(self.post_attention_layernorm(x)) # MLP
return x
class Llama(nn.Module):
def __init__(self, config) -> None:
super().__init__()
# sanity check
assert config.hidden_size % config.num_attention_heads==0
assert config.num_attention_heads % config.num_key_value_heads==0
# params
self.vocab_size = config.vocab_size
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.num_key_values = config.num_key_value_heads
self.head_dim = self.hidden_size//self.num_heads
self.max_position_embeddings = config.max_position_embeddings
self.num_layers = config.num_hidden_layers
self.model_config = config
# modules
self.embedding = nn.Embedding(self.vocab_size, self.hidden_size)
self.decoder_layers = nn.ModuleList([DecoderLayer(config,layer_idx = i) for i in range(self.num_layers)])
self.final_proj = nn.Linear(self.hidden_size, self.vocab_size, bias=False)
RMSNorm = LlamaRMSNorm if os.getenv('FLASH_ATTEN', '1') != '1' else TritonRMSNorm
self.final_norm = RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
def forward(self, input_ids, attention_mask=None, position_ids: torch.Tensor = None):
x = self.embedding(input_ids)
for layer in self.decoder_layers:
x = layer(x) # [batch_size, seq_length, hidden_dim]
x = self.final_norm(x)
logits = self.final_proj(x)
return logits # [batch_size, seq_length, vocab_size]
# https://github.com/karpathy/nanoGPT/blob/9755682b981a45507f6eb9b11eadef8cb83cebd5/model.py#L289-L303
# TODO: Need to check the formula.
def get_flops(self, fwdbwd_per_iter, dt, num_params):
L, H, T = self.num_layers , self.hidden_size, self.max_position_embeddings
flops_per_fwdbwd = 6 * num_params * T + 12* L* H* T ** 2
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
flops_achieved = flops_per_iter * (1.0/dt) # per second
return flops_achieved