picotron/src/parallel/data_parallel/data_parallel.py
2024-10-18 15:51:26 +00:00

53 lines
2.2 KiB
Python

import contextlib
import torch
import torch.distributed as dist
from torch import nn
import src.distributed.process_group_manager as pgm
class DataParallel(nn.Module):
def __init__(self, module):
"""
Initializes the DataParallel wrapper for a given module.
Args:
module (nn.Module): The model to be wrapped for data parallelism.
process_group (torch.distributed.ProcessGroup): The process group used for gradient synchronization.
It could be a data parallel or context parallel group.
"""
super().__init__()
self.module = module
self.require_backward_grad_sync = True # whether to synchronize gradients during backward pass. Set to False when using gradient accumulation
self.register_backward_hook(self._allreduce_grads)
def forward(self, *inputs, **kwargs):
return self.module(*inputs, **kwargs)
def register_backward_hook(self, hook):
"""
Registers a backward hook for all parameters of the model that require gradients.
"""
for p in self.module.parameters():
if p.requires_grad is True:
p.register_hook(hook)
def _allreduce_grads(self, grad):
"""
Performs an all-reduce operation to synchronize gradients across multiple processes.
"""
# No synchronization needed during gradient accumulation, except at the final accumulation step.
# 324K tokens/s/gpu -> 334K tokens/s/gpu
if self.require_backward_grad_sync:
dist.all_reduce(grad, op=dist.ReduceOp.SUM, group=pgm.process_group_manager.dp_group)
grad /= pgm.process_group_manager.dp_world_size
return grad
@contextlib.contextmanager
def no_sync(self):
"""
A context manager to temporarily disable gradient synchronization.
This is useful for performing multiple backward passes during gradient accumulation without synchronizing
gradients in between.
"""
self.require_backward_grad_sync = False
yield
self.require_backward_grad_sync = True