picotron/train.py

112 lines
4.3 KiB
Python

#VERBOSE=0 torchrun --nproc_per_node 4 --master_addr localhost --master_port 25500 train.py --pp_size 2 --dp_size 2
import os
import torch.nn.functional as F
import torch, torch.distributed as dist
from torch.optim import AdamW
from transformers import AutoConfig, AutoModelForCausalLM
import argparse
import parallel_context as pc
from utils import set_all_seed, display_parallelism_grid
from parallel_context import setup_parallel_context
from pipeline_parallel import train_step_pipeline_1f1b, train_step_pipeline_afab, PipelineParallel
from data_parallel import DataParallel
from dataset import MicroBatchDataLoader
def train_step(model, data_loader, device):
total_loss = 0.0
for _ in range(data_loader.num_local_micro_batches):
batch = next(iter(data_loader))
input_ids = batch["input_ids"].to(device)
position_ids = batch["position_index"].to(device)
target_ids = batch["target_ids"].to(device)
outputs = model(input_ids=input_ids, position_ids=position_ids)
logits = outputs.logits
# Use your suggested cross_entropy calculation
loss = F.cross_entropy(logits.transpose(1, 2), target_ids, reduction='mean')
loss.backward()
total_loss += loss.item()
avg_loss = total_loss / data_loader.num_local_micro_batches
return avg_loss
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--tp_size", type=int, default=1)
parser.add_argument("--pp_size", type=int, default=1)
parser.add_argument("--dp_size", type=int, default=1)
args = parser.parse_args()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
local_rank, world_size = int(os.environ["LOCAL_RANK"]), int(os.environ["WORLD_SIZE"])
host, port = os.environ["MASTER_ADDR"], int(os.environ["MASTER_PORT"])
SEQ_LEN, GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, LEARNING_RATE, NUM_SAMPLES, MAX_TOKENS = 10, 6, 2, 1e-4, 20, 1800
dist.init_process_group(rank=local_rank, world_size=world_size, backend="nccl", init_method=f"tcp://{host}:{port}")
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
setup_parallel_context(tp_size=args.tp_size, pp_size=args.pp_size, dp_size=args.dp_size)
if pc.parallel_context.global_rank == local_rank:
display_parallelism_grid()
set_all_seed(seed=42)
model_name = "HuggingFaceTB/SmolLM-360M-Instruct"
config = AutoConfig.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, config=config).to(device)
if pc.parallel_context.pp_world_size > 1:
model = PipelineParallel(model, config).to(device)
if pc.parallel_context.dp_world_size > 1:
model = DataParallel(model, config).to(device)
model.train()
data_loader = MicroBatchDataLoader(GLOBAL_BATCH_SIZE, MICRO_BATCH_SIZE, SEQ_LEN, "roneneldan/TinyStories", model_name, num_samples=NUM_SAMPLES)
tensor_shapes = (SEQ_LEN, data_loader.micro_batch_size, config.hidden_size)
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
trained_tokens, step = 0, 0
tokens_per_step = data_loader.num_global_micro_batches * data_loader.micro_batch_size * SEQ_LEN
dist.barrier()
#TODO: find a way to setup reference model training
#TODO: Add activation checkpointing
#TODO: add gradient accumulation
while trained_tokens < MAX_TOKENS:
data_loader.set_epoch(step)
optimizer.zero_grad()
if pc.parallel_context.pp_world_size > 1:
loss = train_step_pipeline_afab(model, data_loader, tensor_shapes, device)
else:
loss = train_step(model, data_loader, device)
if pc.parallel_context.dp_world_size > 1:
# Average gradient across DP ranks
model.all_reduce_gradients()
optimizer.step()
trained_tokens += tokens_per_step
step += 1
#NOTE(fmom): change later to log on rank 0 (g00) everytime ?
if pc.parallel_context.pp_is_last_stage and pc.parallel_context.global_rank == pc.parallel_context.tp_first_rank and pc.parallel_context.global_rank == pc.parallel_context.dp_first_rank:
print(f"[rank {pc.parallel_context.global_rank}] Step: {step}, Loss: {loss:.4f}, Tokens: {trained_tokens}/{MAX_TOKENS}")
dist.destroy_process_group()