picotron/distributed_primtives.py
2024-09-25 13:33:20 +00:00

46 lines
2.6 KiB
Python

import os
import process_group_manager as pgm
import torch, torch.distributed as dist
import process_group_manager as pgm
STEP, VERBOSE = 0, os.environ.get("VERBOSE", "0") == "1"
def communicate(operation='send_forward', tensor=None, shapes=None, dtype=None):
global STEP
global VERBOSE
if operation == 'recv_forward':
if pgm.process_group_manager.pp_is_first_stage: return None
tensor = torch.empty(shapes, requires_grad=True, device='cuda', dtype=dtype)
src = pgm.process_group_manager.pp_prev_rank
elif operation == 'send_forward':
if pgm.process_group_manager.pp_is_last_stage: return
dest = pgm.process_group_manager.pp_next_rank
elif operation == 'recv_backward':
if pgm.process_group_manager.pp_is_last_stage: return None
tensor = torch.empty(shapes, requires_grad=True, device='cuda', dtype=dtype)
src = pgm.process_group_manager.pp_next_rank
elif operation == 'send_backward':
if pgm.process_group_manager.pp_is_first_stage: return
dest = pgm.process_group_manager.pp_prev_rank
is_send = operation.startswith('send')
peer_rank = dest if is_send else src
op = dist.P2POp(dist.isend if is_send else dist.irecv, tensor, peer_rank)
if VERBOSE: print(f"{operation} | {'sending' if is_send else 'receiving'} {operation.split('_')[1]} {pgm.process_group_manager.pp_rank} {'' if is_send else ''} {peer_rank} | STEP:{STEP} | RANK:{pgm.process_group_manager.pp_rank}", flush=True)
[req.wait() for req in dist.batch_isend_irecv([op])]
torch.cuda.synchronize()
if VERBOSE: STEP += 1
return tensor if not is_send else None
def bidirectional_communicate(operation, send_tensor, recv_shapes, dtype, device):
global STEP
global VERBOSE
is_fwd = (operation == 'send_fwd_recv_bwd')
if (is_fwd and pgm.process_group_manager.pp_is_last_stage) or (not is_fwd and pgm.process_group_manager.pp_is_first_stage): return None
peer_rank = pgm.process_group_manager.pp_next_rank if is_fwd else pgm.process_group_manager.pp_prev_rank
recv_tensor = torch.empty(recv_shapes, requires_grad=True, device=device, dtype=dtype)
reqs = dist.batch_isend_irecv([dist.P2POp(dist.isend, send_tensor, peer_rank), dist.P2POp(dist.irecv, recv_tensor, peer_rank)])
if VERBOSE: print(f"{operation} | sending {'next' if is_fwd else 'prev'} {pgm.process_group_manager.pp_rank} -> {peer_rank} | "f"receiving {'next' if is_fwd else 'prev'} {peer_rank} -> {pgm.process_group_manager.pp_rank} | "f"STEP {STEP=} | RANK:{pgm.process_group_manager.pp_rank}", flush=True)
[req.wait() for req in reqs]
torch.cuda.synchronize()
if VERBOSE: STEP += 1
return recv_tensor