picotron/distributed/process_group_manager.py
2024-10-15 12:43:28 +00:00

70 lines
4.1 KiB
Python

import os
import torch
import torch.distributed as dist
class ProcessGroupManager:
def __init__(self, tp_size, cp_size, pp_size, dp_size):
self.global_rank = dist.get_rank()
self.world_size = dist.get_world_size()
self.local_rank = int(os.environ.get("LOCAL_RANK", self.global_rank % self.world_size))
self.tp_size = tp_size
self.cp_size = cp_size
self.pp_size = pp_size
self.dp_size = dp_size
assert self.world_size == self.tp_size * self.cp_size * self.pp_size * self.dp_size, f"World size ({self.world_size}) != TP ({self.tp_size}) * CP ({self.cp_size}) * PP ({self.pp_size}) * DP ({self.dp_size})"
self.grid = torch.arange(self.world_size).view(self.tp_size, self.cp_size, self.pp_size, self.dp_size) # TP * CP * PP * DP grid
# Find the position of the current process in the grid
self.tp_rank, self.cp_rank, self.pp_rank, self.dp_rank = (self.grid == self.global_rank).nonzero().flatten().tolist()
# Process group creation
self.tp_group = dist.new_subgroups_by_enumeration([self.grid[:, c, p, d].tolist() for c in range(cp_size) for p in range(pp_size) for d in range(dp_size)])[0]
self.cp_group = dist.new_subgroups_by_enumeration([self.grid[t, :, p, d].tolist() for t in range(tp_size) for p in range(pp_size) for d in range(dp_size)])[0]
self.pp_group = dist.new_subgroups_by_enumeration([self.grid[t, c, :, d].tolist() for t in range(tp_size) for c in range(cp_size) for d in range(dp_size)])[0]
self.dp_group = dist.new_subgroups_by_enumeration([self.grid[t, c, p, :].tolist() for t in range(tp_size) for c in range(cp_size) for p in range(pp_size)])[0]
self.cp_dp_group = dist.new_subgroups_by_enumeration([self.grid[t, :, p, :].flatten().tolist() for t in range(tp_size) for p in range(pp_size)])[0]
self.world_group = dist.group.WORLD
self.tp_group_ids = self.grid[:, self.cp_rank, self.pp_rank, self.dp_rank].tolist()
self.cp_group_ids = self.grid[self.tp_rank, :, self.pp_rank, self.dp_rank].tolist()
self.pp_group_ids = self.grid[self.tp_rank, self.cp_rank, :, self.dp_rank].tolist()
self.dp_group_ids = self.grid[self.tp_rank, self.cp_rank, self.pp_rank, :].tolist()
self.cp_dp_group_ids = self.grid[self.tp_rank, :, self.pp_rank, :].tolist()
# Tensor parallelism
self.tp_first_rank = self.tp_group_ids[0]
self.tp_last_rank = self.tp_group_ids[-1]
self.tp_world_size = dist.get_world_size(group=self.tp_group)
# Context parallelism
self.cp_first_rank = self.cp_group_ids[0]
self.cp_last_rank = self.cp_group_ids[-1]
self.cp_world_size = dist.get_world_size(group=self.cp_group)
self.cp_send_rank = self.cp_group_ids[(self.cp_rank + 1) % self.cp_size]
self.cp_recv_rank = self.cp_group_ids[(self.cp_rank - 1) % self.cp_size]
# Pipeline parallelism
self.pp_first_rank = self.pp_group_ids[0]
self.pp_last_rank = self.pp_group_ids[-1]
self.pp_is_first_stage = self.pp_rank == 0
self.pp_is_last_stage = self.pp_rank == self.pp_size - 1
self.pp_next_rank = None if self.pp_rank == self.pp_size - 1 else int(self.grid[self.tp_rank, self.cp_rank, self.pp_rank + 1, self.dp_rank].item())
self.pp_prev_rank = None if self.pp_rank == 0 else int(self.grid[self.tp_rank, self.cp_rank, self.pp_rank - 1, self.dp_rank].item())
self.pp_world_size = dist.get_world_size(group=self.pp_group)
# Data parallelism
self.dp_first_rank = self.dp_group_ids[0]
self.dp_last_rank = self.dp_group_ids[-1]
self.dp_world_size = dist.get_world_size(group=self.dp_group)
# Context + Data paralellism
self.cp_dp_world_size = dist.get_world_size(group=self.cp_dp_group)
def __str__(self):
return f"TP({self.tp_size})-CP({self.cp_size})-PP({self.pp_size})-DP({self.dp_size})-Rank({self.global_rank})"
def setup_process_group_manager(tp_size, cp_size, pp_size, dp_size):
global process_group_manager
process_group_manager = ProcessGroupManager(tp_size, cp_size, pp_size, dp_size)