vllm/vllm/engine/ray_utils.py

118 lines
4.5 KiB
Python
Raw Normal View History

2023-07-20 13:49:31 +08:00
from typing import Optional, Tuple, TYPE_CHECKING
from vllm.config import ParallelConfig
from vllm.logger import init_logger
from vllm.utils import get_open_port, is_hip
logger = init_logger(__name__)
2023-05-21 04:06:59 +08:00
try:
import ray
2023-07-20 13:49:31 +08:00
from ray.air.util.torch_dist import TorchDistributedWorker
class RayWorkerVllm(TorchDistributedWorker):
2023-07-20 13:49:31 +08:00
"""Ray wrapper for vllm.worker.Worker, allowing Worker to be
lazliy initialized after Ray sets CUDA_VISIBLE_DEVICES."""
def __init__(self, init_cached_hf_modules=False) -> None:
if init_cached_hf_modules:
from transformers.dynamic_module_utils import init_hf_modules
init_hf_modules()
2023-07-20 13:49:31 +08:00
self.worker = None
def init_worker(self, worker_init_fn):
self.worker = worker_init_fn()
def __getattr__(self, name):
return getattr(self.worker, name)
def execute_method(self, method, *args, **kwargs):
executor = getattr(self, method)
return executor(*args, **kwargs)
except ImportError as e:
logger.warning(f"Failed to import Ray with {e!r}. "
"For distributed inference, please install Ray with "
"`pip install ray pandas pyarrow`.")
2023-05-21 04:06:59 +08:00
ray = None
2023-07-20 13:49:31 +08:00
TorchDistributedWorker = None
RayWorkerVllm = None
2023-05-21 04:06:59 +08:00
2023-07-20 13:49:31 +08:00
if TYPE_CHECKING:
from ray.util.placement_group import PlacementGroup
2023-05-21 04:06:59 +08:00
def initialize_cluster(
parallel_config: ParallelConfig,
2023-06-17 17:25:21 +08:00
engine_use_ray: bool = False,
ray_address: Optional[str] = None,
2023-07-20 13:49:31 +08:00
) -> Tuple[str, Optional["PlacementGroup"]]:
"""Initialize the distributed cluster probably with Ray.
Args:
parallel_config: The configurations for parallel execution.
2023-06-17 17:25:21 +08:00
engine_use_ray: Whether to use Ray for async engine.
ray_address: The address of the Ray cluster. If None, uses
the default Ray cluster address.
Returns:
A tuple of (`distributed_init_method`, `placement_group`). The
`distributed_init_method` is the address for initializing the
distributed backend. `placement_group` includes the specification
of the resources for each distributed worker.
"""
2023-06-17 17:25:21 +08:00
if parallel_config.worker_use_ray or engine_use_ray:
if ray is None:
raise ImportError(
"Ray is not installed. Please install Ray to use distributed "
"serving.")
# Connect to a ray cluster.
if is_hip():
ray.init(address=ray_address,
ignore_reinit_error=True,
num_gpus=parallel_config.world_size)
else:
ray.init(address=ray_address, ignore_reinit_error=True)
if not parallel_config.worker_use_ray:
2023-05-21 04:06:59 +08:00
# Initialize cluster locally.
2023-07-16 14:11:02 +08:00
port = get_open_port()
2023-05-21 04:06:59 +08:00
# We need to setup the distributed init method to make sure
# the distributed megatron code (e.g., get world size) works correctly.
distributed_init_method = f"tcp://localhost:{port}"
2023-07-20 13:49:31 +08:00
return distributed_init_method, None
current_placement_group = ray.util.get_current_placement_group()
if current_placement_group:
# We are in a placement group
bundles = current_placement_group.bundle_specs
# Verify that we can use the placement group.
gpu_bundles = 0
for bundle in bundles:
bundle_gpus = bundle.get("GPU", 0)
if bundle_gpus > 1:
raise ValueError(
"Placement group bundle cannot have more than 1 GPU.")
if bundle_gpus:
2023-07-20 13:49:31 +08:00
gpu_bundles += 1
if parallel_config.world_size > gpu_bundles:
2023-05-21 04:06:59 +08:00
raise ValueError(
2023-07-20 13:49:31 +08:00
"The number of required GPUs exceeds the total number of "
"available GPUs in the placement group.")
2023-05-21 04:06:59 +08:00
else:
2023-07-20 13:49:31 +08:00
num_gpus_in_cluster = ray.cluster_resources().get("GPU", 0)
if parallel_config.world_size > num_gpus_in_cluster:
2023-05-21 04:06:59 +08:00
raise ValueError(
2023-07-20 13:49:31 +08:00
"The number of required GPUs exceeds the total number of "
"available GPUs in the cluster.")
# Create a new placement group
current_placement_group = ray.util.placement_group([{
"GPU": 1
}] * parallel_config.world_size)
# Wait until PG is ready - this will block until all
# requested resources are available, and will timeout
# if they cannot be provisioned.
ray.get(current_placement_group.ready(), timeout=1800)
return None, current_placement_group