vllm/tests/models/test_llava.py

128 lines
5.0 KiB
Python
Raw Normal View History

import gc
from dataclasses import fields
from enum import Enum
2024-06-03 13:56:41 +08:00
from typing import Any, Dict, List, Tuple
import pytest
import torch
from transformers import AutoTokenizer
from vllm.config import VisionLanguageConfig
2024-06-03 13:56:41 +08:00
def iter_llava_configs(model_name: str):
image_hw_to_feature_size = {
(336, 336): 576,
}
for (h, w), f in image_hw_to_feature_size.items():
for input_type, input_shape in [
(VisionLanguageConfig.ImageInputType.PIXEL_VALUES, (1, 3, h, w)),
(VisionLanguageConfig.ImageInputType.IMAGE_FEATURES, (1, f, 1024)),
]:
yield (model_name,
VisionLanguageConfig(image_input_type=input_type,
image_feature_size=f,
image_token_id=32000,
image_input_shape=input_shape,
image_processor=model_name,
image_processor_revision=None))
model_and_vl_config = [
2024-06-03 13:56:41 +08:00
*iter_llava_configs("llava-hf/llava-1.5-7b-hf"),
# Not enough memory
# *iter_llava_configs("llava-hf/llava-1.5-13b-hf"),
]
2024-06-03 13:56:41 +08:00
def as_dict(vlm_config: VisionLanguageConfig) -> Dict[str, Any]:
"""Flatten vision language config to pure args.
Compatible with what llm entrypoint expects.
"""
result = {}
2024-06-03 13:56:41 +08:00
for field in fields(vlm_config):
value = getattr(vlm_config, field.name)
if isinstance(value, Enum):
result[field.name] = value.name.lower()
elif isinstance(value, tuple):
result[field.name] = ",".join([str(item) for item in value])
else:
result[field.name] = value
2024-06-03 13:56:41 +08:00
result["disable_image_processor"] = vlm_config.image_processor is None
return result
def sanitize_vllm_output(vllm_output: Tuple[List[int], str],
vision_language_config: VisionLanguageConfig,
model_id: str):
"""Sanitize vllm output to be comparable with hf output.
The function reduces `input_ids` from 1, 32000, 32000, ..., 32000,
x1, x2, x3 ... to 1, 32000, x1, x2, x3 ...
It also reduces `output_str` from "<image><image>bla" to "bla".
"""
tokenizer = AutoTokenizer.from_pretrained(model_id)
image_token_str = tokenizer.decode(vision_language_config.image_token_id)
image_token_str_len = len(image_token_str)
input_ids, output_str = vllm_output
sanitized_input_ids = input_ids[0:2] + input_ids[2 + vision_language_config
.image_feature_size - 1:]
sanitzied_output_str = output_str[vision_language_config.
image_feature_size *
image_token_str_len:]
return sanitized_input_ids, sanitzied_output_str
@pytest.mark.parametrize("worker_use_ray", [False])
@pytest.mark.parametrize("model_and_config", model_and_vl_config)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [128])
def test_models(hf_runner, vllm_runner, hf_image_prompts, hf_images,
2024-06-03 13:56:41 +08:00
vllm_image_prompts, vllm_images, model_and_config, dtype: str,
max_tokens: int, worker_use_ray: bool) -> None:
"""Inference result should be the same between hf and vllm.
All the image fixtures for the test is under tests/images.
2024-06-03 13:56:41 +08:00
For huggingface runner, we provide the PIL images as input.
For vllm runner, we provide MultiModalData objects and corresponding
vision language config as input.
Note, the text input is also adjusted to abide by vllm contract.
The text output is sanitized to be able to compare with hf.
"""
model_id, vision_language_config = model_and_config
2024-06-03 13:56:41 +08:00
hf_model = hf_runner(model_id, dtype=dtype)
hf_outputs = hf_model.generate_greedy(hf_image_prompts,
max_tokens,
images=hf_images)
del hf_model
vllm_model = vllm_runner(model_id,
dtype=dtype,
worker_use_ray=worker_use_ray,
2024-06-03 13:56:41 +08:00
enforce_eager=True,
**as_dict(vision_language_config))
vllm_outputs = vllm_model.generate_greedy(vllm_image_prompts,
max_tokens,
images=vllm_images)
del vllm_model
gc.collect()
torch.cuda.empty_cache()
for i in range(len(hf_image_prompts)):
hf_output_ids, hf_output_str = hf_outputs[i]
vllm_output_ids, vllm_output_str = sanitize_vllm_output(
vllm_outputs[i], vision_language_config, model_id)
assert hf_output_str == vllm_output_str, (
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
assert hf_output_ids == vllm_output_ids, (
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
2024-06-03 13:56:41 +08:00
# TODO: Add test for `tensor_parallel_size` [ref: PR #3883]
# (Requires multiple GPUs)