vllm/tests/lora/test_punica_variation.py

307 lines
8.0 KiB
Python
Raw Normal View History

"""
This script is mainly used to test whether trtion kernels can run normally
under different conditions, including various batches, numbers of LoRA , and
maximum ranks.
"""
import pytest
import torch
# Enable custom op register
import vllm.lora.ops.bgmv_expand
import vllm.lora.ops.bgmv_expand_slice
import vllm.lora.ops.bgmv_shrink
import vllm.lora.ops.sgmv_expand
import vllm.lora.ops.sgmv_expand_slice
import vllm.lora.ops.sgmv_shrink # noqa: F401
from vllm.platforms import current_platform
from .utils import (generate_data, generate_data_for_expand_nslices,
ref_torch_groupgemm)
HIDDEN_SIZES = [4097]
BATCHES = [1, 4, 16, 32]
NUM_LORA = [1, 8, 32, 128]
DTYPES = [torch.float16, torch.bfloat16]
2024-08-06 09:57:25 +08:00
MAX_RANKS = [1, 4, 8, 16, 32, 64, 128, 256]
SCALES = [0.5]
SEED = [0]
CUDA_DEVICES = [f"cuda:{0}"]
def assert_close(a, b):
rtol, atol = {
torch.float16: (6e-2, 6e-2),
torch.bfloat16: (6e-2, 6e-2),
torch.float32: (1e-2, 1e-2),
}[a.dtype]
torch.testing.assert_close(a, b, rtol=rtol, atol=atol)
# Unlike test_punica_sizes.py, we directly utilize custom op for
# testing, which verifies the correct registration of these ops.
bgmv_expand = torch.ops.vllm.bgmv_expand
bgmv_expand_slice = torch.ops.vllm.bgmv_expand_slice
bgmv_shrink = torch.ops.vllm.bgmv_shrink
sgmv_expand = torch.ops.vllm.sgmv_expand
sgmv_expand_slice = torch.ops.vllm.sgmv_expand_slice
sgmv_shrink = torch.ops.vllm.sgmv_shrink
@pytest.mark.parametrize("batches", BATCHES)
@pytest.mark.parametrize("num_loras", NUM_LORA)
@pytest.mark.parametrize("rank", MAX_RANKS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("scaling", SCALES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("op_type", ["shrink", "expand"])
@pytest.mark.parametrize("seed", SEED)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_punica_sgmv(
batches: int,
num_loras: int,
rank: int,
hidden_size: int,
scaling: float,
dtype: torch.dtype,
op_type: str,
seed: int,
device: str,
):
torch.set_default_device(device)
current_platform.seed_everything(seed)
seq_length = 128
(
inputs_tensor,
lora_weights,
our_out_tensor,
ref_out_tensor,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
) = generate_data(
batches,
hidden_size,
num_loras,
rank,
seq_length,
dtype,
op_type,
device,
)
max_seq_length = seq_len_tensor.max()
token_nums = seq_len_tensor.sum().item()
if isinstance(max_seq_length, tuple):
max_seq_length = max_seq_length[0].item()
else:
max_seq_length = max_seq_length.item()
if op_type == "shrink":
sgmv_shrink(
inputs_tensor,
lora_weights,
our_out_tensor,
b_seq_start_loc,
seq_len_tensor,
lora_indices_tensor,
batches,
max_seq_length,
token_nums,
scaling,
)
else:
sgmv_expand(
inputs_tensor,
lora_weights,
our_out_tensor,
b_seq_start_loc,
seq_len_tensor,
lora_indices_tensor,
batches,
max_seq_length,
token_nums,
add_inputs=True,
)
ref_torch_groupgemm(
ref_out_tensor,
inputs_tensor,
lora_weights,
lora_indices_tensor,
seq_len_tensor,
batches,
scaling if op_type == "shrink" else 1.0,
op_type,
)
if op_type == "shrink":
ref_out_tensor = ref_out_tensor.to(torch.float32)
assert_close(our_out_tensor, ref_out_tensor)
@pytest.mark.parametrize("batches", BATCHES)
@pytest.mark.parametrize("num_loras", NUM_LORA)
@pytest.mark.parametrize("rank", MAX_RANKS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("scaling", SCALES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("op_type", ["shrink", "expand"])
@pytest.mark.parametrize("seed", SEED)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_punica_bgmv(
batches: int,
num_loras: int,
rank: int,
hidden_size: int,
scaling: float,
dtype: torch.dtype,
op_type: str,
seed: int,
device: str,
):
torch.set_default_device(device)
current_platform.seed_everything(seed)
seq_length = 1
(
inputs_tensor,
lora_weights,
our_out_tensor,
ref_out_tensor,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
) = generate_data(
batches,
hidden_size,
num_loras,
rank,
seq_length,
dtype,
op_type,
device,
)
if op_type == "shrink":
bgmv_shrink(
inputs_tensor,
lora_weights,
our_out_tensor,
indices,
scaling,
)
else:
bgmv_expand(
inputs_tensor,
lora_weights,
our_out_tensor,
indices,
add_inputs=True,
)
ref_torch_groupgemm(
ref_out_tensor,
inputs_tensor,
lora_weights,
lora_indices_tensor,
seq_len_tensor,
batches,
scaling if op_type == "shrink" else 1.0,
op_type,
)
if op_type == "shrink":
ref_out_tensor = ref_out_tensor.to(torch.float32)
assert_close(our_out_tensor, ref_out_tensor)
@pytest.mark.parametrize("batches", BATCHES)
@pytest.mark.parametrize("num_loras", NUM_LORA)
@pytest.mark.parametrize("rank", MAX_RANKS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("nslices", [2, 3])
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("op_type", ["sgmv", "bgmv"])
@pytest.mark.parametrize("seed", SEED)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_punica_expand_nslices(
batches: int,
num_loras: int,
rank: int,
hidden_size: int,
nslices: int,
dtype: torch.dtype,
op_type: str,
seed: int,
device: str,
):
torch.set_default_device(device)
current_platform.seed_everything(seed)
seq_length = 128 if op_type == "sgmv" else 1
(
inputs_tensor,
lora_weights_lst,
our_outputs,
ref_outputs,
b_seq_start_loc,
lora_indices_tensor,
seq_len_tensor,
indices,
) = generate_data_for_expand_nslices(
batches,
hidden_size,
num_loras,
rank,
seq_length,
dtype,
nslices,
device,
)
max_seq_length = seq_len_tensor.max()
token_nums = seq_len_tensor.sum().item()
if isinstance(max_seq_length, tuple):
max_seq_length = max_seq_length[0].item()
else:
max_seq_length = max_seq_length.item()
slice_offset = 0
for index in range(nslices):
lora_weights = lora_weights_lst[index]
if op_type == "sgmv":
sgmv_expand_slice(
inputs_tensor,
lora_weights,
our_outputs,
b_seq_start_loc,
seq_len_tensor,
lora_indices_tensor,
batches,
max_seq_length,
token_nums,
slice_offset,
hidden_size,
add_inputs=True,
)
else:
bgmv_expand_slice(
inputs_tensor,
lora_weights,
our_outputs,
indices,
slice_offset,
slice_size=hidden_size,
add_inputs=True,
)
ref_torch_groupgemm(
ref_outputs[:, slice_offset:slice_offset + hidden_size],
inputs_tensor,
lora_weights,
lora_indices_tensor,
seq_len_tensor,
batches,
1.0,
op_type="expand",
)
slice_offset += hidden_size
assert_close(our_outputs, ref_outputs)