vllm/cacheflow/models/input_metadata.py

43 lines
1.4 KiB
Python
Raw Normal View History

2023-02-23 03:01:20 +08:00
from typing import List
import torch
class InputMetadata:
def __init__(
self,
2023-02-23 17:25:01 +08:00
seq_ids: List[int],
2023-02-23 03:01:20 +08:00
prompt_lens: List[int],
slot_mapping: torch.Tensor,
context_lens: torch.Tensor,
2023-02-24 07:02:25 +08:00
# FIXME: Rename
2023-02-23 03:01:20 +08:00
max_context_len: int,
block_tables: torch.Tensor,
) -> None:
2023-02-23 17:25:01 +08:00
self.seq_ids = seq_ids
2023-02-23 03:01:20 +08:00
self.prompt_lens = prompt_lens
2023-02-23 08:10:07 +08:00
self.slot_mapping = slot_mapping
2023-02-23 03:01:20 +08:00
self.context_lens = context_lens
self.max_context_len = max_context_len
self.block_tables = block_tables
self.num_prompts = len(prompt_lens)
self.num_generation_tokens = context_lens.shape[0]
2023-02-24 07:02:25 +08:00
self.num_valid_tokens = len(slot_mapping)
2023-02-24 04:20:33 +08:00
if block_tables.numel() > 0:
self.max_num_blocks_per_seq = block_tables.shape[1]
else:
self.max_num_blocks_per_seq = 0
2023-02-23 03:01:20 +08:00
assert self.num_generation_tokens == block_tables.shape[0]
2023-02-23 17:25:01 +08:00
assert self.num_prompts + self.num_generation_tokens == len(seq_ids)
2023-02-24 07:02:25 +08:00
def __repr__(self) -> str:
return (f'InputMetadata('
f'seq_ids={self.seq_ids}, '
f'num_prompts={self.num_prompts}, '
f'num_generation_tokens={self.num_generation_tokens}, '
f'num_valid_tokens={self.num_valid_tokens}, '
f'max_num_blocks_per_seq={self.max_num_blocks_per_seq}, '
f'max_context_len={self.max_context_len})')