Add instructions to install vLLM+cu118 (#1717)
This commit is contained in:
parent
c5f7740d89
commit
06e9ebebd5
@ -3,14 +3,14 @@
|
|||||||
Installation
|
Installation
|
||||||
============
|
============
|
||||||
|
|
||||||
vLLM is a Python library that also contains pre-compiled C++ and CUDA (11.8) binaries.
|
vLLM is a Python library that also contains pre-compiled C++ and CUDA (12.1) binaries.
|
||||||
|
|
||||||
Requirements
|
Requirements
|
||||||
------------
|
------------
|
||||||
|
|
||||||
* OS: Linux
|
* OS: Linux
|
||||||
* Python: 3.8 -- 3.11
|
* Python: 3.8 -- 3.11
|
||||||
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, etc.)
|
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, H100, etc.)
|
||||||
|
|
||||||
Install with pip
|
Install with pip
|
||||||
----------------
|
----------------
|
||||||
@ -23,9 +23,24 @@ You can install vLLM using pip:
|
|||||||
$ conda create -n myenv python=3.8 -y
|
$ conda create -n myenv python=3.8 -y
|
||||||
$ conda activate myenv
|
$ conda activate myenv
|
||||||
|
|
||||||
$ # Install vLLM.
|
$ # Install vLLM with CUDA 12.1.
|
||||||
$ pip install vllm
|
$ pip install vllm
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
As of now, vLLM's binaries are compiled on CUDA 12.1 by default.
|
||||||
|
However, you can install vLLM with CUDA 11.8 by running:
|
||||||
|
|
||||||
|
.. code-block:: console
|
||||||
|
|
||||||
|
$ # Install vLLM with CUDA 11.8.
|
||||||
|
$ # Replace `cp310` with your Python version (e.g., `cp38`, `cp39`, `cp311`).
|
||||||
|
$ pip install https://github.com/vllm-project/vllm/releases/download/v0.2.2/vllm-0.2.2+cu118-cp310-cp310-manylinux1_x86_64.whl
|
||||||
|
|
||||||
|
$ # Re-install PyTorch with CUDA 11.8.
|
||||||
|
$ pip uninstall torch -y
|
||||||
|
$ pip install torch --upgrade --index-url https://download.pytorch.org/whl/cu118
|
||||||
|
|
||||||
|
|
||||||
.. _build_from_source:
|
.. _build_from_source:
|
||||||
|
|
||||||
@ -45,6 +60,5 @@ You can also build and install vLLM from source:
|
|||||||
|
|
||||||
.. code-block:: console
|
.. code-block:: console
|
||||||
|
|
||||||
$ # Pull the Docker image with CUDA 11.8.
|
|
||||||
$ # Use `--ipc=host` to make sure the shared memory is large enough.
|
$ # Use `--ipc=host` to make sure the shared memory is large enough.
|
||||||
$ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:22.12-py3
|
$ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:23.10-py3
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user