[Misc] Move registry to its own file (#9064)

This commit is contained in:
Cyrus Leung 2024-10-04 18:01:37 +08:00 committed by GitHub
parent 0f6d7a9a34
commit 0e36fd4909
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 341 additions and 335 deletions

View File

@ -99,7 +99,7 @@ This method should load the weights from the HuggingFace's checkpoint file and a
5. Register your model
----------------------
Finally, register your :code:`*ForCausalLM` class to the :code:`_MODELS` in `vllm/model_executor/models/__init__.py <https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/__init__.py>`_.
Finally, register your :code:`*ForCausalLM` class to the :code:`_MODELS` in `vllm/model_executor/models/registry.py <https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/registry.py>`_.
6. Out-of-Tree Model Integration
--------------------------------------------

View File

@ -3,13 +3,13 @@ import warnings
import pytest
import torch.cuda
from vllm.model_executor.models import _MODELS, ModelRegistry
from vllm.model_executor.models import ModelRegistry
from vllm.platforms import current_platform
from ..utils import fork_new_process_for_each_test
@pytest.mark.parametrize("model_arch", _MODELS)
@pytest.mark.parametrize("model_arch", ModelRegistry.get_supported_archs())
def test_registry_imports(model_arch):
# Ensure all model classes can be imported successfully
ModelRegistry.resolve_model_cls(model_arch)

View File

@ -24,8 +24,7 @@ from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.punica import PunicaWrapper
from vllm.lora.utils import (from_layer, from_layer_logits_processor,
parse_fine_tuned_lora_name, replace_submodule)
from vllm.model_executor.models.interfaces import (SupportsLoRA,
supports_multimodal)
from vllm.model_executor.models import SupportsLoRA, supports_multimodal
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.models.utils import PPMissingLayer
from vllm.utils import is_pin_memory_available

View File

@ -41,9 +41,8 @@ from vllm.model_executor.model_loader.weight_utils import (
get_gguf_extra_tensor_names, get_quant_config, gguf_quant_weights_iterator,
initialize_dummy_weights, np_cache_weights_iterator, pt_weights_iterator,
safetensors_weights_iterator)
from vllm.model_executor.models.interfaces import (has_inner_state,
supports_lora,
supports_multimodal)
from vllm.model_executor.models import (has_inner_state, supports_lora,
supports_multimodal)
from vllm.model_executor.utils import set_weight_attrs
from vllm.platforms import current_platform
from vllm.utils import is_pin_memory_available

View File

@ -1,325 +1,16 @@
import importlib
import string
import subprocess
import sys
import uuid
from functools import lru_cache, partial
from typing import Callable, Dict, List, Optional, Tuple, Type, Union
import torch.nn as nn
from vllm.logger import init_logger
from vllm.utils import is_hip
from .interfaces import supports_multimodal, supports_pp
logger = init_logger(__name__)
_GENERATION_MODELS = {
"AquilaModel": ("llama", "LlamaForCausalLM"),
"AquilaForCausalLM": ("llama", "LlamaForCausalLM"), # AquilaChat2
"ArcticForCausalLM": ("arctic", "ArcticForCausalLM"),
"BaiChuanForCausalLM": ("baichuan", "BaiChuanForCausalLM"), # baichuan-7b
"BaichuanForCausalLM": ("baichuan", "BaichuanForCausalLM"), # baichuan-13b
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
"ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"),
"CohereForCausalLM": ("commandr", "CohereForCausalLM"),
"DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"),
"DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"),
"DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"),
"DeepseekV2ForCausalLM": ("deepseek_v2", "DeepseekV2ForCausalLM"),
"ExaoneForCausalLM": ("exaone", "ExaoneForCausalLM"),
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
"GemmaForCausalLM": ("gemma", "GemmaForCausalLM"),
"Gemma2ForCausalLM": ("gemma2", "Gemma2ForCausalLM"),
"GPT2LMHeadModel": ("gpt2", "GPT2LMHeadModel"),
"GPTBigCodeForCausalLM": ("gpt_bigcode", "GPTBigCodeForCausalLM"),
"GPTJForCausalLM": ("gpt_j", "GPTJForCausalLM"),
"GPTNeoXForCausalLM": ("gpt_neox", "GPTNeoXForCausalLM"),
"GraniteForCausalLM": ("granite", "GraniteForCausalLM"),
"GraniteMoeForCausalLM": ("granitemoe", "GraniteMoeForCausalLM"),
"InternLMForCausalLM": ("llama", "LlamaForCausalLM"),
"InternLM2ForCausalLM": ("internlm2", "InternLM2ForCausalLM"),
"JAISLMHeadModel": ("jais", "JAISLMHeadModel"),
"JambaForCausalLM": ("jamba", "JambaForCausalLM"),
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
# For decapoda-research/llama-*
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
"MistralForCausalLM": ("llama", "LlamaForCausalLM"),
"MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"),
"QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"),
# transformers's mpt class has lower case
"MptForCausalLM": ("mpt", "MPTForCausalLM"),
"MPTForCausalLM": ("mpt", "MPTForCausalLM"),
"MiniCPMForCausalLM": ("minicpm", "MiniCPMForCausalLM"),
"MiniCPM3ForCausalLM": ("minicpm3", "MiniCPM3ForCausalLM"),
"NemotronForCausalLM": ("nemotron", "NemotronForCausalLM"),
"OlmoForCausalLM": ("olmo", "OlmoForCausalLM"),
"OlmoeForCausalLM": ("olmoe", "OlmoeForCausalLM"),
"OPTForCausalLM": ("opt", "OPTForCausalLM"),
"OrionForCausalLM": ("orion", "OrionForCausalLM"),
"PersimmonForCausalLM": ("persimmon", "PersimmonForCausalLM"),
"PhiForCausalLM": ("phi", "PhiForCausalLM"),
"Phi3ForCausalLM": ("phi3", "Phi3ForCausalLM"),
"Phi3SmallForCausalLM": ("phi3_small", "Phi3SmallForCausalLM"),
"PhiMoEForCausalLM": ("phimoe", "PhiMoEForCausalLM"),
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
"Qwen2MoeForCausalLM": ("qwen2_moe", "Qwen2MoeForCausalLM"),
"Qwen2VLForConditionalGeneration":
("qwen2_vl", "Qwen2VLForConditionalGeneration"),
"RWForCausalLM": ("falcon", "FalconForCausalLM"),
"StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"),
"StableLmForCausalLM": ("stablelm", "StablelmForCausalLM"),
"Starcoder2ForCausalLM": ("starcoder2", "Starcoder2ForCausalLM"),
"SolarForCausalLM": ("solar", "SolarForCausalLM"),
"XverseForCausalLM": ("xverse", "XverseForCausalLM"),
# NOTE: The below models are for speculative decoding only
"MedusaModel": ("medusa", "Medusa"),
"EAGLEModel": ("eagle", "EAGLE"),
"MLPSpeculatorPreTrainedModel": ("mlp_speculator", "MLPSpeculator"),
}
_EMBEDDING_MODELS = {
"MistralModel": ("llama_embedding", "LlamaEmbeddingModel"),
"Qwen2ForRewardModel": ("qwen2_rm", "Qwen2ForRewardModel"),
}
_MULTIMODAL_MODELS = {
"Blip2ForConditionalGeneration":
("blip2", "Blip2ForConditionalGeneration"),
"ChameleonForConditionalGeneration":
("chameleon", "ChameleonForConditionalGeneration"),
"FuyuForCausalLM": ("fuyu", "FuyuForCausalLM"),
"InternVLChatModel": ("internvl", "InternVLChatModel"),
"LlavaForConditionalGeneration": ("llava",
"LlavaForConditionalGeneration"),
"LlavaNextForConditionalGeneration": ("llava_next",
"LlavaNextForConditionalGeneration"),
"LlavaNextVideoForConditionalGeneration":
("llava_next_video", "LlavaNextVideoForConditionalGeneration"),
"LlavaOnevisionForConditionalGeneration":
("llava_onevision", "LlavaOnevisionForConditionalGeneration"),
"MiniCPMV": ("minicpmv", "MiniCPMV"),
"PaliGemmaForConditionalGeneration": ("paligemma",
"PaliGemmaForConditionalGeneration"),
"Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
"PixtralForConditionalGeneration": ("pixtral",
"PixtralForConditionalGeneration"),
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
"Qwen2VLForConditionalGeneration": ("qwen2_vl",
"Qwen2VLForConditionalGeneration"),
"UltravoxModel": ("ultravox", "UltravoxModel"),
"MllamaForConditionalGeneration": ("mllama",
"MllamaForConditionalGeneration"),
}
_CONDITIONAL_GENERATION_MODELS = {
"BartModel": ("bart", "BartForConditionalGeneration"),
"BartForConditionalGeneration": ("bart", "BartForConditionalGeneration"),
}
_MODELS = {
**_GENERATION_MODELS,
**_EMBEDDING_MODELS,
**_MULTIMODAL_MODELS,
**_CONDITIONAL_GENERATION_MODELS,
}
# Architecture -> type.
# out of tree models
_OOT_MODELS: Dict[str, Type[nn.Module]] = {}
# Models not supported by ROCm.
_ROCM_UNSUPPORTED_MODELS: List[str] = []
# Models partially supported by ROCm.
# Architecture -> Reason.
_ROCM_SWA_REASON = ("Sliding window attention (SWA) is not yet supported in "
"Triton flash attention. For half-precision SWA support, "
"please use CK flash attention by setting "
"`VLLM_USE_TRITON_FLASH_ATTN=0`")
_ROCM_PARTIALLY_SUPPORTED_MODELS: Dict[str, str] = {
"Qwen2ForCausalLM":
_ROCM_SWA_REASON,
"MistralForCausalLM":
_ROCM_SWA_REASON,
"MixtralForCausalLM":
_ROCM_SWA_REASON,
"PaliGemmaForConditionalGeneration":
("ROCm flash attention does not yet "
"fully support 32-bit precision on PaliGemma"),
"Phi3VForCausalLM":
("ROCm Triton flash attention may run into compilation errors due to "
"excessive use of shared memory. If this happens, disable Triton FA "
"by setting `VLLM_USE_TRITON_FLASH_ATTN=0`")
}
class ModelRegistry:
@staticmethod
def _get_module_cls_name(model_arch: str) -> Tuple[str, str]:
module_relname, cls_name = _MODELS[model_arch]
return f"vllm.model_executor.models.{module_relname}", cls_name
@staticmethod
@lru_cache(maxsize=128)
def _try_get_model_stateful(model_arch: str) -> Optional[Type[nn.Module]]:
if model_arch not in _MODELS:
return None
module_name, cls_name = ModelRegistry._get_module_cls_name(model_arch)
module = importlib.import_module(module_name)
return getattr(module, cls_name, None)
@staticmethod
def _try_get_model_stateless(model_arch: str) -> Optional[Type[nn.Module]]:
if model_arch in _OOT_MODELS:
return _OOT_MODELS[model_arch]
if is_hip():
if model_arch in _ROCM_UNSUPPORTED_MODELS:
raise ValueError(
f"Model architecture {model_arch} is not supported by "
"ROCm for now.")
if model_arch in _ROCM_PARTIALLY_SUPPORTED_MODELS:
logger.warning(
"Model architecture %s is partially supported by ROCm: %s",
model_arch, _ROCM_PARTIALLY_SUPPORTED_MODELS[model_arch])
return None
@staticmethod
def _try_load_model_cls(model_arch: str) -> Optional[Type[nn.Module]]:
model = ModelRegistry._try_get_model_stateless(model_arch)
if model is not None:
return model
return ModelRegistry._try_get_model_stateful(model_arch)
@staticmethod
def resolve_model_cls(
architectures: Union[str, List[str]], ) -> Tuple[Type[nn.Module], str]:
if isinstance(architectures, str):
architectures = [architectures]
if not architectures:
logger.warning("No model architectures are specified")
for arch in architectures:
model_cls = ModelRegistry._try_load_model_cls(arch)
if model_cls is not None:
return (model_cls, arch)
raise ValueError(
f"Model architectures {architectures} are not supported for now. "
f"Supported architectures: {ModelRegistry.get_supported_archs()}")
@staticmethod
def get_supported_archs() -> List[str]:
return list(_MODELS.keys()) + list(_OOT_MODELS.keys())
@staticmethod
def register_model(model_arch: str, model_cls: Type[nn.Module]):
if model_arch in _MODELS:
logger.warning(
"Model architecture %s is already registered, and will be "
"overwritten by the new model class %s.", model_arch,
model_cls.__name__)
_OOT_MODELS[model_arch] = model_cls
@staticmethod
@lru_cache(maxsize=128)
def _check_stateless(
func: Callable[[Type[nn.Module]], bool],
model_arch: str,
*,
default: Optional[bool] = None,
) -> bool:
"""
Run a boolean function against a model and return the result.
If the model is not found, returns the provided default value.
If the model is not already imported, the function is run inside a
subprocess to avoid initializing CUDA for the main program.
"""
model = ModelRegistry._try_get_model_stateless(model_arch)
if model is not None:
return func(model)
if model_arch not in _MODELS and default is not None:
return default
module_name, cls_name = ModelRegistry._get_module_cls_name(model_arch)
valid_name_characters = string.ascii_letters + string.digits + "._"
if any(s not in valid_name_characters for s in module_name):
raise ValueError(f"Unsafe module name detected for {model_arch}")
if any(s not in valid_name_characters for s in cls_name):
raise ValueError(f"Unsafe class name detected for {model_arch}")
if any(s not in valid_name_characters for s in func.__module__):
raise ValueError(f"Unsafe module name detected for {func}")
if any(s not in valid_name_characters for s in func.__name__):
raise ValueError(f"Unsafe class name detected for {func}")
err_id = uuid.uuid4()
stmts = ";".join([
f"from {module_name} import {cls_name}",
f"from {func.__module__} import {func.__name__}",
f"assert {func.__name__}({cls_name}), '{err_id}'",
])
result = subprocess.run([sys.executable, "-c", stmts],
capture_output=True)
if result.returncode != 0:
err_lines = [line.decode() for line in result.stderr.splitlines()]
if err_lines and err_lines[-1] != f"AssertionError: {err_id}":
err_str = "\n".join(err_lines)
raise RuntimeError(
"An unexpected error occurred while importing the model in "
f"another process. Error log:\n{err_str}")
return result.returncode == 0
@staticmethod
def is_embedding_model(architectures: Union[str, List[str]]) -> bool:
if isinstance(architectures, str):
architectures = [architectures]
if not architectures:
logger.warning("No model architectures are specified")
return any(arch in _EMBEDDING_MODELS for arch in architectures)
@staticmethod
def is_multimodal_model(architectures: Union[str, List[str]]) -> bool:
if isinstance(architectures, str):
architectures = [architectures]
if not architectures:
logger.warning("No model architectures are specified")
is_mm = partial(ModelRegistry._check_stateless,
supports_multimodal,
default=False)
return any(is_mm(arch) for arch in architectures)
@staticmethod
def is_pp_supported_model(architectures: Union[str, List[str]]) -> bool:
if isinstance(architectures, str):
architectures = [architectures]
if not architectures:
logger.warning("No model architectures are specified")
is_pp = partial(ModelRegistry._check_stateless,
supports_pp,
default=False)
return any(is_pp(arch) for arch in architectures)
from .interfaces import (HasInnerState, SupportsLoRA, SupportsMultiModal,
SupportsPP, has_inner_state, supports_lora,
supports_multimodal, supports_pp)
from .registry import ModelRegistry
__all__ = [
"ModelRegistry",
"HasInnerState",
"has_inner_state",
"SupportsLoRA",
"supports_lora",
"SupportsMultiModal",
"supports_multimodal",
"SupportsPP",
"supports_pp",
]

View File

@ -25,20 +25,18 @@ from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
causal_conv1d_fn, causal_conv1d_update)
from vllm.model_executor.layers.mamba.ops.mamba_ssm import (
selective_scan_fn, selective_state_update)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.interfaces import HasInnerState
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.utils import set_weight_attrs
from vllm.sequence import IntermediateTensors
from vllm.worker.model_runner import (_BATCH_SIZES_TO_CAPTURE,
_get_graph_batch_size)
from .interfaces import SupportsLoRA
from .interfaces import HasInnerState, SupportsLoRA
KVCache = Tuple[torch.Tensor, torch.Tensor]

View File

@ -0,0 +1,320 @@
import importlib
import string
import subprocess
import sys
import uuid
from functools import lru_cache, partial
from typing import Callable, Dict, List, Optional, Tuple, Type, Union
import torch.nn as nn
from vllm.logger import init_logger
from vllm.utils import is_hip
from .interfaces import supports_multimodal, supports_pp
logger = init_logger(__name__)
_GENERATION_MODELS = {
"AquilaModel": ("llama", "LlamaForCausalLM"),
"AquilaForCausalLM": ("llama", "LlamaForCausalLM"), # AquilaChat2
"ArcticForCausalLM": ("arctic", "ArcticForCausalLM"),
"BaiChuanForCausalLM": ("baichuan", "BaiChuanForCausalLM"), # baichuan-7b
"BaichuanForCausalLM": ("baichuan", "BaichuanForCausalLM"), # baichuan-13b
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
"ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"),
"CohereForCausalLM": ("commandr", "CohereForCausalLM"),
"DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"),
"DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"),
"DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"),
"DeepseekV2ForCausalLM": ("deepseek_v2", "DeepseekV2ForCausalLM"),
"ExaoneForCausalLM": ("exaone", "ExaoneForCausalLM"),
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
"GemmaForCausalLM": ("gemma", "GemmaForCausalLM"),
"Gemma2ForCausalLM": ("gemma2", "Gemma2ForCausalLM"),
"GPT2LMHeadModel": ("gpt2", "GPT2LMHeadModel"),
"GPTBigCodeForCausalLM": ("gpt_bigcode", "GPTBigCodeForCausalLM"),
"GPTJForCausalLM": ("gpt_j", "GPTJForCausalLM"),
"GPTNeoXForCausalLM": ("gpt_neox", "GPTNeoXForCausalLM"),
"GraniteForCausalLM": ("granite", "GraniteForCausalLM"),
"GraniteMoeForCausalLM": ("granitemoe", "GraniteMoeForCausalLM"),
"InternLMForCausalLM": ("llama", "LlamaForCausalLM"),
"InternLM2ForCausalLM": ("internlm2", "InternLM2ForCausalLM"),
"JAISLMHeadModel": ("jais", "JAISLMHeadModel"),
"JambaForCausalLM": ("jamba", "JambaForCausalLM"),
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
# For decapoda-research/llama-*
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
"MistralForCausalLM": ("llama", "LlamaForCausalLM"),
"MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"),
"QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"),
# transformers's mpt class has lower case
"MptForCausalLM": ("mpt", "MPTForCausalLM"),
"MPTForCausalLM": ("mpt", "MPTForCausalLM"),
"MiniCPMForCausalLM": ("minicpm", "MiniCPMForCausalLM"),
"MiniCPM3ForCausalLM": ("minicpm3", "MiniCPM3ForCausalLM"),
"NemotronForCausalLM": ("nemotron", "NemotronForCausalLM"),
"OlmoForCausalLM": ("olmo", "OlmoForCausalLM"),
"OlmoeForCausalLM": ("olmoe", "OlmoeForCausalLM"),
"OPTForCausalLM": ("opt", "OPTForCausalLM"),
"OrionForCausalLM": ("orion", "OrionForCausalLM"),
"PersimmonForCausalLM": ("persimmon", "PersimmonForCausalLM"),
"PhiForCausalLM": ("phi", "PhiForCausalLM"),
"Phi3ForCausalLM": ("phi3", "Phi3ForCausalLM"),
"Phi3SmallForCausalLM": ("phi3_small", "Phi3SmallForCausalLM"),
"PhiMoEForCausalLM": ("phimoe", "PhiMoEForCausalLM"),
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
"Qwen2MoeForCausalLM": ("qwen2_moe", "Qwen2MoeForCausalLM"),
"Qwen2VLForConditionalGeneration":
("qwen2_vl", "Qwen2VLForConditionalGeneration"),
"RWForCausalLM": ("falcon", "FalconForCausalLM"),
"StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"),
"StableLmForCausalLM": ("stablelm", "StablelmForCausalLM"),
"Starcoder2ForCausalLM": ("starcoder2", "Starcoder2ForCausalLM"),
"SolarForCausalLM": ("solar", "SolarForCausalLM"),
"XverseForCausalLM": ("xverse", "XverseForCausalLM"),
# NOTE: The below models are for speculative decoding only
"MedusaModel": ("medusa", "Medusa"),
"EAGLEModel": ("eagle", "EAGLE"),
"MLPSpeculatorPreTrainedModel": ("mlp_speculator", "MLPSpeculator"),
}
_EMBEDDING_MODELS = {
"MistralModel": ("llama_embedding", "LlamaEmbeddingModel"),
"Qwen2ForRewardModel": ("qwen2_rm", "Qwen2ForRewardModel"),
}
_MULTIMODAL_MODELS = {
"Blip2ForConditionalGeneration":
("blip2", "Blip2ForConditionalGeneration"),
"ChameleonForConditionalGeneration":
("chameleon", "ChameleonForConditionalGeneration"),
"FuyuForCausalLM": ("fuyu", "FuyuForCausalLM"),
"InternVLChatModel": ("internvl", "InternVLChatModel"),
"LlavaForConditionalGeneration": ("llava",
"LlavaForConditionalGeneration"),
"LlavaNextForConditionalGeneration": ("llava_next",
"LlavaNextForConditionalGeneration"),
"LlavaNextVideoForConditionalGeneration":
("llava_next_video", "LlavaNextVideoForConditionalGeneration"),
"LlavaOnevisionForConditionalGeneration":
("llava_onevision", "LlavaOnevisionForConditionalGeneration"),
"MiniCPMV": ("minicpmv", "MiniCPMV"),
"PaliGemmaForConditionalGeneration": ("paligemma",
"PaliGemmaForConditionalGeneration"),
"Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
"PixtralForConditionalGeneration": ("pixtral",
"PixtralForConditionalGeneration"),
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
"Qwen2VLForConditionalGeneration": ("qwen2_vl",
"Qwen2VLForConditionalGeneration"),
"UltravoxModel": ("ultravox", "UltravoxModel"),
"MllamaForConditionalGeneration": ("mllama",
"MllamaForConditionalGeneration"),
}
_CONDITIONAL_GENERATION_MODELS = {
"BartModel": ("bart", "BartForConditionalGeneration"),
"BartForConditionalGeneration": ("bart", "BartForConditionalGeneration"),
}
_MODELS = {
**_GENERATION_MODELS,
**_EMBEDDING_MODELS,
**_MULTIMODAL_MODELS,
**_CONDITIONAL_GENERATION_MODELS,
}
# Architecture -> type.
# out of tree models
_OOT_MODELS: Dict[str, Type[nn.Module]] = {}
# Models not supported by ROCm.
_ROCM_UNSUPPORTED_MODELS: List[str] = []
# Models partially supported by ROCm.
# Architecture -> Reason.
_ROCM_SWA_REASON = ("Sliding window attention (SWA) is not yet supported in "
"Triton flash attention. For half-precision SWA support, "
"please use CK flash attention by setting "
"`VLLM_USE_TRITON_FLASH_ATTN=0`")
_ROCM_PARTIALLY_SUPPORTED_MODELS: Dict[str, str] = {
"Qwen2ForCausalLM":
_ROCM_SWA_REASON,
"MistralForCausalLM":
_ROCM_SWA_REASON,
"MixtralForCausalLM":
_ROCM_SWA_REASON,
"PaliGemmaForConditionalGeneration":
("ROCm flash attention does not yet "
"fully support 32-bit precision on PaliGemma"),
"Phi3VForCausalLM":
("ROCm Triton flash attention may run into compilation errors due to "
"excessive use of shared memory. If this happens, disable Triton FA "
"by setting `VLLM_USE_TRITON_FLASH_ATTN=0`")
}
class ModelRegistry:
@staticmethod
def _get_module_cls_name(model_arch: str) -> Tuple[str, str]:
module_relname, cls_name = _MODELS[model_arch]
return f"vllm.model_executor.models.{module_relname}", cls_name
@staticmethod
@lru_cache(maxsize=128)
def _try_get_model_stateful(model_arch: str) -> Optional[Type[nn.Module]]:
if model_arch not in _MODELS:
return None
module_name, cls_name = ModelRegistry._get_module_cls_name(model_arch)
module = importlib.import_module(module_name)
return getattr(module, cls_name, None)
@staticmethod
def _try_get_model_stateless(model_arch: str) -> Optional[Type[nn.Module]]:
if model_arch in _OOT_MODELS:
return _OOT_MODELS[model_arch]
if is_hip():
if model_arch in _ROCM_UNSUPPORTED_MODELS:
raise ValueError(
f"Model architecture {model_arch} is not supported by "
"ROCm for now.")
if model_arch in _ROCM_PARTIALLY_SUPPORTED_MODELS:
logger.warning(
"Model architecture %s is partially supported by ROCm: %s",
model_arch, _ROCM_PARTIALLY_SUPPORTED_MODELS[model_arch])
return None
@staticmethod
def _try_load_model_cls(model_arch: str) -> Optional[Type[nn.Module]]:
model = ModelRegistry._try_get_model_stateless(model_arch)
if model is not None:
return model
return ModelRegistry._try_get_model_stateful(model_arch)
@staticmethod
def resolve_model_cls(
architectures: Union[str, List[str]], ) -> Tuple[Type[nn.Module], str]:
if isinstance(architectures, str):
architectures = [architectures]
if not architectures:
logger.warning("No model architectures are specified")
for arch in architectures:
model_cls = ModelRegistry._try_load_model_cls(arch)
if model_cls is not None:
return (model_cls, arch)
raise ValueError(
f"Model architectures {architectures} are not supported for now. "
f"Supported architectures: {ModelRegistry.get_supported_archs()}")
@staticmethod
def get_supported_archs() -> List[str]:
return list(_MODELS.keys()) + list(_OOT_MODELS.keys())
@staticmethod
def register_model(model_arch: str, model_cls: Type[nn.Module]):
if model_arch in _MODELS:
logger.warning(
"Model architecture %s is already registered, and will be "
"overwritten by the new model class %s.", model_arch,
model_cls.__name__)
_OOT_MODELS[model_arch] = model_cls
@staticmethod
@lru_cache(maxsize=128)
def _check_stateless(
func: Callable[[Type[nn.Module]], bool],
model_arch: str,
*,
default: Optional[bool] = None,
) -> bool:
"""
Run a boolean function against a model and return the result.
If the model is not found, returns the provided default value.
If the model is not already imported, the function is run inside a
subprocess to avoid initializing CUDA for the main program.
"""
model = ModelRegistry._try_get_model_stateless(model_arch)
if model is not None:
return func(model)
if model_arch not in _MODELS and default is not None:
return default
module_name, cls_name = ModelRegistry._get_module_cls_name(model_arch)
valid_name_characters = string.ascii_letters + string.digits + "._"
if any(s not in valid_name_characters for s in module_name):
raise ValueError(f"Unsafe module name detected for {model_arch}")
if any(s not in valid_name_characters for s in cls_name):
raise ValueError(f"Unsafe class name detected for {model_arch}")
if any(s not in valid_name_characters for s in func.__module__):
raise ValueError(f"Unsafe module name detected for {func}")
if any(s not in valid_name_characters for s in func.__name__):
raise ValueError(f"Unsafe class name detected for {func}")
err_id = uuid.uuid4()
stmts = ";".join([
f"from {module_name} import {cls_name}",
f"from {func.__module__} import {func.__name__}",
f"assert {func.__name__}({cls_name}), '{err_id}'",
])
result = subprocess.run([sys.executable, "-c", stmts],
capture_output=True)
if result.returncode != 0:
err_lines = [line.decode() for line in result.stderr.splitlines()]
if err_lines and err_lines[-1] != f"AssertionError: {err_id}":
err_str = "\n".join(err_lines)
raise RuntimeError(
"An unexpected error occurred while importing the model in "
f"another process. Error log:\n{err_str}")
return result.returncode == 0
@staticmethod
def is_embedding_model(architectures: Union[str, List[str]]) -> bool:
if isinstance(architectures, str):
architectures = [architectures]
if not architectures:
logger.warning("No model architectures are specified")
return any(arch in _EMBEDDING_MODELS for arch in architectures)
@staticmethod
def is_multimodal_model(architectures: Union[str, List[str]]) -> bool:
if isinstance(architectures, str):
architectures = [architectures]
if not architectures:
logger.warning("No model architectures are specified")
is_mm = partial(ModelRegistry._check_stateless,
supports_multimodal,
default=False)
return any(is_mm(arch) for arch in architectures)
@staticmethod
def is_pp_supported_model(architectures: Union[str, List[str]]) -> bool:
if isinstance(architectures, str):
architectures = [architectures]
if not architectures:
logger.warning("No model architectures are specified")
is_pp = partial(ModelRegistry._check_stateless,
supports_pp,
default=False)
return any(is_pp(arch) for arch in architectures)

View File

@ -35,8 +35,7 @@ from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.model_executor.model_loader import get_model
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
from vllm.model_executor.models.interfaces import (supports_lora,
supports_multimodal)
from vllm.model_executor.models import supports_lora, supports_multimodal
from vllm.model_executor.models.utils import set_cpu_offload_max_bytes
from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
MultiModalInputs, MultiModalRegistry)