[Misc] Add ignored layers for fp8 quantization (#6657)

This commit is contained in:
Michael Goin 2024-07-23 14:04:04 -04:00 committed by GitHub
parent 38c4b7e863
commit 0eb0757bef
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 57 additions and 47 deletions

View File

@ -5,6 +5,9 @@ from typing import Any, Dict, Iterable, Optional
from pydantic import BaseModel, Field
from torch.nn import Module
from vllm.model_executor.layers.quantization.utils.quant_utils import (
FUSED_LAYER_NAME_MAPPING)
class CompressionFormat(Enum):
dense = "dense"
@ -86,13 +89,6 @@ def is_activation_quantization_format(format: str) -> bool:
return format in _ACTIVATION_QUANTIZATION_FORMATS
# fused_name: List[shard_name]
_FUSED_LAYER_NAME_MAPPING = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"]
}
def should_ignore_layer(layer_name: Optional[str],
ignore: Iterable[str]) -> bool:
if layer_name is None:
@ -106,8 +102,8 @@ def should_ignore_layer(layer_name: Optional[str],
# in the safetensors checkpoint. So, we convert the name
# from the fused version to unfused + check to make sure that
# each shard of the fused layer has the same scheme.
if proj_name in _FUSED_LAYER_NAME_MAPPING:
shard_proj_names = _FUSED_LAYER_NAME_MAPPING[proj_name]
if proj_name in FUSED_LAYER_NAME_MAPPING:
shard_proj_names = FUSED_LAYER_NAME_MAPPING[proj_name]
# Convert fused_name --> [shard_names]
shard_names = [

View File

@ -11,6 +11,8 @@ from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
apply_fp8_marlin_linear, prepare_fp8_layer_for_marlin)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
is_layer_skipped)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
apply_fp8_linear, create_per_channel_scale_param)
from vllm.model_executor.utils import set_weight_attrs
@ -18,14 +20,6 @@ from vllm.platforms import current_platform
logger = init_logger(__name__)
# Note: this is a hack. We should update each model to register the
# stacked params and get it from there instead in a future PR.
# fused_name: List[shard_name]
_FUSED_LAYER_NAME_MAPPING = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"]
}
class FBGEMMFp8Config(QuantizationConfig):
"""Config class for FBGEMM Fp8."""
@ -62,37 +56,10 @@ class FBGEMMFp8Config(QuantizationConfig):
input_scale_ub = cls.get_from_keys(config, ["activation_scale_ub"])
return cls(ignore_list=ignore_list, input_scale_ub=input_scale_ub)
def _is_layer_skipped(self, prefix: str) -> bool:
# prefix: model.layers.0.self_attn.q_proj
# proj_name: q_proj
proj_name = prefix.split(".")[-1]
if proj_name in _FUSED_LAYER_NAME_MAPPING:
shard_prefixes = [
prefix.replace(proj_name, shard_proj_name)
for shard_proj_name in _FUSED_LAYER_NAME_MAPPING[proj_name]
]
is_skipped = None
for shard_prefix in shard_prefixes:
is_shard_skipped = shard_prefix in self.ignore_list
if is_skipped is None:
is_skipped = is_shard_skipped
elif is_shard_skipped != is_skipped:
raise ValueError(
f"Detected some but not all shards of {prefix} "
"are quantized. All shards of fused layers "
"to have the same precision.")
else:
is_skipped = prefix in self.ignore_list
assert is_skipped is not None
return is_skipped
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
if isinstance(layer, LinearBase):
if self._is_layer_skipped(prefix):
if is_layer_skipped(prefix, self.ignore_list):
return UnquantizedLinearMethod()
return FBGEMMFp8LinearMethod(self)
return None

View File

@ -8,12 +8,15 @@ from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe import (FusedMoE, FusedMoEMethodBase,
fused_moe)
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
UnquantizedLinearMethod)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
apply_fp8_marlin_linear, prepare_fp8_layer_for_marlin)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
is_layer_skipped)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
all_close_1d, apply_fp8_linear, create_per_tensor_scale_param,
cutlass_fp8_supported, per_tensor_dequantize, requantize_with_max_scale)
@ -33,6 +36,7 @@ class Fp8Config(QuantizationConfig):
self,
is_checkpoint_fp8_serialized: bool = False,
activation_scheme: str = "dynamic",
ignored_layers: Optional[List[str]] = None,
) -> None:
self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
if is_checkpoint_fp8_serialized:
@ -42,6 +46,7 @@ class Fp8Config(QuantizationConfig):
raise ValueError(
f"Unsupported activation scheme {activation_scheme}")
self.activation_scheme = activation_scheme
self.ignored_layers = ignored_layers or []
@classmethod
def get_name(cls) -> str:
@ -64,14 +69,18 @@ class Fp8Config(QuantizationConfig):
quant_method = cls.get_from_keys(config, ["quant_method"])
is_checkpoint_fp8_serialized = ("fp8" in quant_method)
activation_scheme = cls.get_from_keys(config, ["activation_scheme"])
ignored_layers = cls.get_from_keys_or(config, ["ignored_layers"], None)
return cls(is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized,
activation_scheme=activation_scheme)
activation_scheme=activation_scheme,
ignored_layers=ignored_layers)
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
from vllm.attention.layer import Attention # Avoid circular import
if isinstance(layer, LinearBase):
if is_layer_skipped(prefix, self.ignored_layers):
return UnquantizedLinearMethod()
return Fp8LinearMethod(self)
elif isinstance(layer, FusedMoE):
return Fp8MoEMethod(self)

View File

@ -1,10 +1,48 @@
"""This file is used for /tests and /benchmarks"""
from typing import List
import numpy
import torch
SUPPORTED_NUM_BITS = [4, 8]
SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128]
# Note: this is a hack. We should update each model to register the
# stacked params and get it from there instead in a future PR.
# fused_name: List[shard_name]
FUSED_LAYER_NAME_MAPPING = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"]
}
def is_layer_skipped(prefix: str, ignored_layers: List[str]) -> bool:
# prefix: model.layers.0.self_attn.q_proj
# proj_name: q_proj
proj_name = prefix.split(".")[-1]
if proj_name in FUSED_LAYER_NAME_MAPPING:
shard_prefixes = [
prefix.replace(proj_name, shard_proj_name)
for shard_proj_name in FUSED_LAYER_NAME_MAPPING[proj_name]
]
is_skipped = None
for shard_prefix in shard_prefixes:
is_shard_skipped = shard_prefix in ignored_layers
if is_skipped is None:
is_skipped = is_shard_skipped
elif is_shard_skipped != is_skipped:
raise ValueError(
f"Detected some but not all shards of {prefix} "
"are quantized. All shards of fused layers "
"to have the same precision.")
else:
is_skipped = prefix in ignored_layers
assert is_skipped is not None
return is_skipped
def get_pack_factor(num_bits):
assert num_bits in SUPPORTED_NUM_BITS, f"Unsupported num_bits = {num_bits}"