[misc] [doc] [frontend] LLM torch profiler support (#7943)

This commit is contained in:
William Lin 2024-09-06 17:48:48 -07:00 committed by GitHub
parent 29f49cd6e3
commit 12dd715807
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 74 additions and 3 deletions

View File

@ -17,14 +17,28 @@ Traces can be visualized using https://ui.perfetto.dev/.
.. tip::
Only send a few requests through vLLM when profiling, as the traces can get quite large. Also, no need to untar the traces, they can be viewed directly.
Example commands:
.. tip::
To stop the profiler - it flushes out all the profile trace files to the directory. This takes time, for example for about 100 requests worth of data for a llama 70b, it takes about 10 minutes to flush out on a H100.
Set the env variable VLLM_RPC_GET_DATA_TIMEOUT_MS to a big number before you start the server. Say something like 30 minutes.
``export VLLM_RPC_GET_DATA_TIMEOUT_MS=1800000``
Example commands and usage:
===========================
Offline Inference:
------------------
Refer to `examples/offline_inference_with_profiler.py <https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_with_profiler.py>`_ for an example.
OpenAI Server:
--------------
.. code-block:: bash
VLLM_TORCH_PROFILER_DIR=/mnt/traces/ python -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3-70B
VLLM_TORCH_PROFILER_DIR=./vllm_profile python -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3-70B
benchmark_serving.py:

View File

@ -0,0 +1,33 @@
import os
from vllm import LLM, SamplingParams
# enable torch profiler, can also be set on cmd line
os.environ["VLLM_TORCH_PROFILER_DIR"] = "./vllm_profile"
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="facebook/opt-125m")
llm.start_profile()
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
llm.stop_profile()
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

View File

@ -1914,6 +1914,12 @@ class LLMEngine:
self.tokenizer.check_health()
self.model_executor.check_health()
def start_profile(self) -> None:
self.model_executor.start_profile()
def stop_profile(self) -> None:
self.model_executor.stop_profile()
def is_tracing_enabled(self) -> bool:
return self.tracer is not None

View File

@ -560,6 +560,12 @@ class LLM:
outputs = self._run_engine(use_tqdm=use_tqdm)
return LLMEngine.validate_outputs(outputs, EmbeddingRequestOutput)
def start_profile(self) -> None:
self.llm_engine.start_profile()
def stop_profile(self) -> None:
self.llm_engine.stop_profile()
# LEGACY
def _convert_v1_inputs(
self,

View File

@ -296,6 +296,12 @@ class CPUExecutor(ExecutorBase):
for result in parallel_worker_tasks:
result.get()
def start_profile(self) -> None:
self.driver_method_invoker(self.driver_worker, "start_profile")
def stop_profile(self) -> None:
self.driver_method_invoker(self.driver_worker, "stop_profile")
class CPUExecutorAsync(CPUExecutor, ExecutorAsyncBase):

View File

@ -169,6 +169,12 @@ class GPUExecutor(ExecutorBase):
# it's running.
return
def start_profile(self) -> None:
self.driver_worker.start_profile()
def stop_profile(self) -> None:
self.driver_worker.stop_profile()
class GPUExecutorAsync(GPUExecutor, ExecutorAsyncBase):