[Model] Add AWQ quantization support for InternVL2 model (#7187)
This commit is contained in:
parent
b74a125800
commit
12e1c65bc9
@ -1,5 +1,5 @@
|
|||||||
import types
|
import types
|
||||||
from typing import List, Optional, Type
|
from typing import List, Optional, Tuple, Type
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
@ -178,6 +178,74 @@ def run_test(
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def run_awq_test(
|
||||||
|
vllm_runner: Type[VllmRunner],
|
||||||
|
image_assets: _ImageAssets,
|
||||||
|
models: Tuple[str, str],
|
||||||
|
*,
|
||||||
|
size_factors: List[float],
|
||||||
|
dtype: str,
|
||||||
|
max_tokens: int,
|
||||||
|
num_logprobs: int,
|
||||||
|
tensor_parallel_size: int,
|
||||||
|
distributed_executor_backend: Optional[str] = None,
|
||||||
|
):
|
||||||
|
source_model, quant_model = models
|
||||||
|
|
||||||
|
images = [asset.pil_image for asset in image_assets]
|
||||||
|
|
||||||
|
inputs_per_image = [(
|
||||||
|
[prompt for _ in size_factors],
|
||||||
|
[rescale_image_size(image, factor) for factor in size_factors],
|
||||||
|
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
|
||||||
|
|
||||||
|
# NOTE: take care of the order. run vLLM first, and then run HF.
|
||||||
|
# vLLM needs a fresh new process without cuda initialization.
|
||||||
|
# if we run HF first, the cuda initialization will be done and it
|
||||||
|
# will hurt multiprocessing backend with fork method (the default method).
|
||||||
|
|
||||||
|
# max_model_len should be greater than image_feature_size
|
||||||
|
with vllm_runner(source_model,
|
||||||
|
max_model_len=4096,
|
||||||
|
dtype=dtype,
|
||||||
|
tensor_parallel_size=tensor_parallel_size,
|
||||||
|
distributed_executor_backend=distributed_executor_backend,
|
||||||
|
enforce_eager=True) as vllm_model:
|
||||||
|
source_outputs_per_image = [
|
||||||
|
vllm_model.generate_greedy_logprobs(prompts,
|
||||||
|
max_tokens,
|
||||||
|
num_logprobs=num_logprobs,
|
||||||
|
images=images)
|
||||||
|
for prompts, images in inputs_per_image
|
||||||
|
]
|
||||||
|
|
||||||
|
with vllm_runner(quant_model,
|
||||||
|
quantization="awq",
|
||||||
|
max_model_len=4096,
|
||||||
|
dtype=dtype,
|
||||||
|
tensor_parallel_size=tensor_parallel_size,
|
||||||
|
distributed_executor_backend=distributed_executor_backend,
|
||||||
|
enforce_eager=True) as vllm_model:
|
||||||
|
quant_outputs_per_image = [
|
||||||
|
vllm_model.generate_greedy_logprobs(prompts,
|
||||||
|
max_tokens,
|
||||||
|
num_logprobs=num_logprobs,
|
||||||
|
images=images)
|
||||||
|
for prompts, images in inputs_per_image
|
||||||
|
]
|
||||||
|
|
||||||
|
for source_outputs, quant_outputs in zip(source_outputs_per_image,
|
||||||
|
quant_outputs_per_image):
|
||||||
|
# TODO: Check whether using original CLIPVisionModel can improve
|
||||||
|
# consistency against HF
|
||||||
|
check_logprobs_close(
|
||||||
|
outputs_0_lst=source_outputs,
|
||||||
|
outputs_1_lst=quant_outputs,
|
||||||
|
name_0="source",
|
||||||
|
name_1="awq",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
target_dtype = "half"
|
target_dtype = "half"
|
||||||
if is_cpu():
|
if is_cpu():
|
||||||
target_dtype = "bfloat16"
|
target_dtype = "bfloat16"
|
||||||
@ -214,3 +282,36 @@ def test_models(hf_runner, vllm_runner, image_assets, model, size_factors,
|
|||||||
num_logprobs=num_logprobs,
|
num_logprobs=num_logprobs,
|
||||||
tensor_parallel_size=1,
|
tensor_parallel_size=1,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"models", [("OpenGVLab/InternVL2-2B", "OpenGVLab/InternVL2-2B-AWQ")])
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"size_factors",
|
||||||
|
[
|
||||||
|
# No image
|
||||||
|
[],
|
||||||
|
# Single-scale
|
||||||
|
[1.0],
|
||||||
|
# Single-scale, batched
|
||||||
|
[1.0, 1.0, 1.0],
|
||||||
|
# Multi-scale
|
||||||
|
[0.25, 0.5, 1.0],
|
||||||
|
],
|
||||||
|
)
|
||||||
|
@pytest.mark.parametrize("dtype", ["half"])
|
||||||
|
@pytest.mark.parametrize("max_tokens", [128])
|
||||||
|
@pytest.mark.parametrize("num_logprobs", [5])
|
||||||
|
@torch.inference_mode()
|
||||||
|
def test_awq_models(vllm_runner, image_assets, models, size_factors,
|
||||||
|
dtype: str, max_tokens: int, num_logprobs: int) -> None:
|
||||||
|
run_awq_test(
|
||||||
|
vllm_runner,
|
||||||
|
image_assets,
|
||||||
|
models,
|
||||||
|
size_factors=size_factors,
|
||||||
|
dtype=dtype,
|
||||||
|
max_tokens=max_tokens,
|
||||||
|
num_logprobs=num_logprobs,
|
||||||
|
tensor_parallel_size=1,
|
||||||
|
)
|
||||||
|
|||||||
@ -570,7 +570,8 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
|
|||||||
# for the packing.
|
# for the packing.
|
||||||
if isinstance(param, PackedvLLMParameter
|
if isinstance(param, PackedvLLMParameter
|
||||||
) and param.packed_dim == param.output_dim:
|
) and param.packed_dim == param.output_dim:
|
||||||
param.adjust_shard_indexes_for_packing(
|
shard_size, shard_offset = \
|
||||||
|
param.adjust_shard_indexes_for_packing(
|
||||||
shard_size=shard_size, shard_offset=shard_offset)
|
shard_size=shard_size, shard_offset=shard_offset)
|
||||||
|
|
||||||
loaded_weight_shard = loaded_weight.narrow(param.output_dim,
|
loaded_weight_shard = loaded_weight.narrow(param.output_dim,
|
||||||
@ -719,7 +720,8 @@ class QKVParallelLinear(ColumnParallelLinear):
|
|||||||
# for the packing.
|
# for the packing.
|
||||||
if isinstance(param, PackedvLLMParameter
|
if isinstance(param, PackedvLLMParameter
|
||||||
) and param.packed_dim == param.output_dim:
|
) and param.packed_dim == param.output_dim:
|
||||||
param.adjust_shard_indexes_for_packing(
|
shard_size, shard_offset = \
|
||||||
|
param.adjust_shard_indexes_for_packing(
|
||||||
shard_size=shard_size, shard_offset=shard_offset)
|
shard_size=shard_size, shard_offset=shard_offset)
|
||||||
|
|
||||||
loaded_weight_shard = loaded_weight.narrow(param.output_dim,
|
loaded_weight_shard = loaded_weight.narrow(param.output_dim,
|
||||||
|
|||||||
@ -131,6 +131,10 @@ def get_quant_config(model_config: ModelConfig,
|
|||||||
# Read the quantization config from the HF model config, if available.
|
# Read the quantization config from the HF model config, if available.
|
||||||
hf_quant_config = getattr(model_config.hf_config, "quantization_config",
|
hf_quant_config = getattr(model_config.hf_config, "quantization_config",
|
||||||
None)
|
None)
|
||||||
|
# some vision model may keep quantization_config in their text_config
|
||||||
|
hf_text_config = getattr(model_config.hf_config, "text_config", None)
|
||||||
|
if hf_quant_config is None and hf_text_config is not None:
|
||||||
|
hf_quant_config = getattr(hf_text_config, "quantization_config", None)
|
||||||
if hf_quant_config is None:
|
if hf_quant_config is None:
|
||||||
# compressed-tensors uses a compressions_config
|
# compressed-tensors uses a compressions_config
|
||||||
hf_quant_config = getattr(model_config.hf_config, "compression_config",
|
hf_quant_config = getattr(model_config.hf_config, "compression_config",
|
||||||
|
|||||||
@ -87,6 +87,7 @@ class InternLM2Attention(nn.Module):
|
|||||||
self.head_dim = hidden_size // self.total_num_heads
|
self.head_dim = hidden_size // self.total_num_heads
|
||||||
self.q_size = self.num_heads * self.head_dim
|
self.q_size = self.num_heads * self.head_dim
|
||||||
self.kv_size = self.num_kv_heads * self.head_dim
|
self.kv_size = self.num_kv_heads * self.head_dim
|
||||||
|
self.key_value_groups = int(self.num_heads / self.num_kv_heads)
|
||||||
self.scaling = self.head_dim**-0.5
|
self.scaling = self.head_dim**-0.5
|
||||||
self.rope_theta = rope_theta
|
self.rope_theta = rope_theta
|
||||||
self.max_position_embeddings = max_position_embeddings
|
self.max_position_embeddings = max_position_embeddings
|
||||||
@ -120,6 +121,14 @@ class InternLM2Attention(nn.Module):
|
|||||||
cache_config=cache_config,
|
cache_config=cache_config,
|
||||||
quant_config=quant_config)
|
quant_config=quant_config)
|
||||||
|
|
||||||
|
def split_qkv(self, qkv: torch.Tensor):
|
||||||
|
qkv = qkv.view(-1, self.num_kv_heads, self.key_value_groups + 2, 128)
|
||||||
|
q, k, v = torch.split(qkv, [self.key_value_groups, 1, 1], dim=2)
|
||||||
|
q = q.reshape(-1, self.q_size)
|
||||||
|
k = k.reshape(-1, self.kv_size)
|
||||||
|
v = v.reshape(-1, self.kv_size)
|
||||||
|
return q, k, v
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
positions: torch.Tensor,
|
positions: torch.Tensor,
|
||||||
@ -128,7 +137,7 @@ class InternLM2Attention(nn.Module):
|
|||||||
attn_metadata: AttentionMetadata,
|
attn_metadata: AttentionMetadata,
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
qkv, _ = self.wqkv(hidden_states)
|
qkv, _ = self.wqkv(hidden_states)
|
||||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
q, k, v = self.split_qkv(qkv)
|
||||||
q, k = self.rotary_emb(positions, q, k)
|
q, k = self.rotary_emb(positions, q, k)
|
||||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||||
output, _ = self.wo(attn_output)
|
output, _ = self.wo(attn_output)
|
||||||
@ -324,24 +333,6 @@ class InternLM2ForCausalLM(nn.Module):
|
|||||||
if name.endswith(".bias") and name not in params_dict:
|
if name.endswith(".bias") and name not in params_dict:
|
||||||
continue
|
continue
|
||||||
param = params_dict[name]
|
param = params_dict[name]
|
||||||
if "wqkv" in name:
|
weight_loader = getattr(param, "weight_loader",
|
||||||
config = self.config
|
default_weight_loader)
|
||||||
kv_groups = (config.num_attention_heads //
|
weight_loader(param, loaded_weight)
|
||||||
config.num_key_value_heads)
|
|
||||||
head_dim = config.hidden_size // config.num_attention_heads
|
|
||||||
loaded_weight = loaded_weight.view(-1, 2 + kv_groups,
|
|
||||||
head_dim,
|
|
||||||
loaded_weight.shape[-1])
|
|
||||||
wq, wk, wv = torch.split(loaded_weight, [kv_groups, 1, 1],
|
|
||||||
dim=1)
|
|
||||||
wq = wq.reshape(-1, wq.shape[-1])
|
|
||||||
wk = wk.reshape(-1, wk.shape[-1])
|
|
||||||
wv = wv.reshape(-1, wv.shape[-1])
|
|
||||||
weight_loader = param.weight_loader
|
|
||||||
weight_loader(param, wq, 'q')
|
|
||||||
weight_loader(param, wk, 'k')
|
|
||||||
weight_loader(param, wv, 'v')
|
|
||||||
else:
|
|
||||||
weight_loader = getattr(param, "weight_loader",
|
|
||||||
default_weight_loader)
|
|
||||||
weight_loader(param, loaded_weight)
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user