[Bugfix] Fix LoRA weight sharding (#10450)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
This commit is contained in:
parent
17d8fc1806
commit
1700c543a5
@ -230,7 +230,7 @@ steps:
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
- tests/lora
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py
|
||||
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore lora/test_long_context.py lora/test_chatglm3_tp.py lora/test_llama_tp.py
|
||||
parallelism: 4
|
||||
|
||||
- label: "PyTorch Fullgraph Smoke Test" # 9min
|
||||
@ -475,18 +475,23 @@ steps:
|
||||
- pytest -v -s distributed/test_pp_cudagraph.py
|
||||
- pytest -v -s distributed/test_pipeline_parallel.py
|
||||
|
||||
- label: LoRA Long Context (Distributed) # 11min
|
||||
# This test runs llama 13B, so it is required to run on 4 GPUs.
|
||||
- label: LoRA TP Test (Distributed)
|
||||
num_gpus: 4
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
- tests/lora/test_long_context
|
||||
- tests/lora
|
||||
commands:
|
||||
# FIXIT: find out which code initialize cuda before running the test
|
||||
# before the fix, we need to use spawn to test it
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
# This test runs llama 13B, so it is required to run on 4 GPUs.
|
||||
- pytest -v -s -x lora/test_long_context.py
|
||||
# There is some Tensor Parallelism related processing logic in LoRA that
|
||||
# requires multi-GPU testing for validation.
|
||||
- pytest -v -s -x lora/test_chatglm3_tp.py
|
||||
- pytest -v -s -x lora/test_llama_tp.py
|
||||
|
||||
|
||||
- label: Weight Loading Multiple GPU Test # 33min
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
|
||||
@ -1,12 +1,21 @@
|
||||
from typing import List
|
||||
|
||||
import vllm
|
||||
from tests.utils import fork_new_process_for_each_test
|
||||
from vllm.lora.request import LoRARequest
|
||||
|
||||
from ..utils import multi_gpu_test
|
||||
|
||||
MODEL_PATH = "THUDM/chatglm3-6b"
|
||||
|
||||
PROMPT_TEMPLATE = """I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.\n"\n##Instruction:\nconcert_singer contains tables such as stadium, singer, concert, singer_in_concert. Table stadium has columns such as Stadium_ID, Location, Name, Capacity, Highest, Lowest, Average. Stadium_ID is the primary key.\nTable singer has columns such as Singer_ID, Name, Country, Song_Name, Song_release_year, Age, Is_male. Singer_ID is the primary key.\nTable concert has columns such as concert_ID, concert_Name, Theme, Stadium_ID, Year. concert_ID is the primary key.\nTable singer_in_concert has columns such as concert_ID, Singer_ID. concert_ID is the primary key.\nThe Stadium_ID of concert is the foreign key of Stadium_ID of stadium.\nThe Singer_ID of singer_in_concert is the foreign key of Singer_ID of singer.\nThe concert_ID of singer_in_concert is the foreign key of concert_ID of concert.\n\n###Input:\n{query}\n\n###Response:""" # noqa: E501
|
||||
|
||||
EXPECTED_LORA_OUTPUT = [
|
||||
"SELECT count(*) FROM singer",
|
||||
"SELECT avg(age) , min(age) , max(age) FROM singer WHERE country = 'France'", # noqa: E501
|
||||
"SELECT name , country , age FROM singer ORDER BY age",
|
||||
]
|
||||
|
||||
|
||||
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
|
||||
prompts = [
|
||||
@ -20,7 +29,6 @@ def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
|
||||
"Show name, country, age for all singers ordered by age from the oldest to the youngest." # noqa: E501
|
||||
),
|
||||
]
|
||||
print(prompts)
|
||||
sampling_params = vllm.SamplingParams(temperature=0, max_tokens=32)
|
||||
outputs = llm.generate(
|
||||
prompts,
|
||||
@ -37,23 +45,58 @@ def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
|
||||
return generated_texts
|
||||
|
||||
|
||||
@fork_new_process_for_each_test
|
||||
def test_chatglm3_lora(chatglm3_lora_files):
|
||||
llm = vllm.LLM(MODEL_PATH,
|
||||
max_model_len=1024,
|
||||
enable_lora=True,
|
||||
max_loras=4,
|
||||
max_lora_rank=64,
|
||||
tensor_parallel_size=1,
|
||||
trust_remote_code=True)
|
||||
|
||||
expected_lora_output = [
|
||||
"SELECT count(*) FROM singer",
|
||||
"SELECT avg(age) , min(age) , max(age) FROM singer WHERE country = 'France'", # noqa: E501
|
||||
"SELECT name , country , age FROM singer ORDER BY age",
|
||||
]
|
||||
output1 = do_sample(llm, chatglm3_lora_files, lora_id=1)
|
||||
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
||||
assert output1[i] == EXPECTED_LORA_OUTPUT[i]
|
||||
output2 = do_sample(llm, chatglm3_lora_files, lora_id=2)
|
||||
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
||||
assert output2[i] == EXPECTED_LORA_OUTPUT[i]
|
||||
|
||||
|
||||
@multi_gpu_test(num_gpus=4)
|
||||
@fork_new_process_for_each_test
|
||||
def test_chatglm3_lora_tp4(chatglm3_lora_files):
|
||||
llm = vllm.LLM(MODEL_PATH,
|
||||
max_model_len=1024,
|
||||
enable_lora=True,
|
||||
max_loras=4,
|
||||
max_lora_rank=64,
|
||||
tensor_parallel_size=4,
|
||||
trust_remote_code=True,
|
||||
fully_sharded_loras=False)
|
||||
|
||||
output1 = do_sample(llm, chatglm3_lora_files, lora_id=1)
|
||||
for i in range(len(expected_lora_output)):
|
||||
assert output1[i] == expected_lora_output[i]
|
||||
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
||||
assert output1[i] == EXPECTED_LORA_OUTPUT[i]
|
||||
output2 = do_sample(llm, chatglm3_lora_files, lora_id=2)
|
||||
for i in range(len(expected_lora_output)):
|
||||
assert output2[i] == expected_lora_output[i]
|
||||
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
||||
assert output2[i] == EXPECTED_LORA_OUTPUT[i]
|
||||
|
||||
|
||||
@multi_gpu_test(num_gpus=4)
|
||||
@fork_new_process_for_each_test
|
||||
def test_chatglm3_lora_tp4_fully_sharded_loras(chatglm3_lora_files):
|
||||
llm = vllm.LLM(MODEL_PATH,
|
||||
max_model_len=1024,
|
||||
enable_lora=True,
|
||||
max_loras=4,
|
||||
max_lora_rank=64,
|
||||
tensor_parallel_size=4,
|
||||
trust_remote_code=True,
|
||||
fully_sharded_loras=True)
|
||||
output1 = do_sample(llm, chatglm3_lora_files, lora_id=1)
|
||||
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
||||
assert output1[i] == EXPECTED_LORA_OUTPUT[i]
|
||||
output2 = do_sample(llm, chatglm3_lora_files, lora_id=2)
|
||||
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
||||
assert output2[i] == EXPECTED_LORA_OUTPUT[i]
|
||||
@ -1,146 +0,0 @@
|
||||
from typing import List
|
||||
|
||||
import pytest
|
||||
import ray
|
||||
|
||||
import vllm
|
||||
from vllm.distributed import cleanup_dist_env_and_memory
|
||||
from vllm.lora.request import LoRARequest
|
||||
|
||||
MODEL_PATH = "meta-llama/Llama-2-7b-hf"
|
||||
|
||||
|
||||
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
|
||||
prompts = [
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]", # noqa: E501
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]", # noqa: E501
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_95 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a low tone mora with a gloss of /˩okiru/ [òkìɽɯ́]? [/user] [assistant]", # noqa: E501
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE candidate (people_id VARCHAR, unsure_rate INTEGER); CREATE TABLE people (sex VARCHAR, people_id VARCHAR)\n\n question: which gender got the highest average uncertain ratio. [/user] [assistant]", # noqa: E501
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_60 (pick INTEGER, former_wnba_team VARCHAR)\n\n question: What pick was a player that previously played for the Minnesota Lynx? [/user] [assistant]", # noqa: E501
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]" # noqa: E501
|
||||
]
|
||||
sampling_params = vllm.SamplingParams(temperature=0,
|
||||
max_tokens=256,
|
||||
stop=["[/assistant]"])
|
||||
outputs = llm.generate(
|
||||
prompts,
|
||||
sampling_params,
|
||||
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
||||
if lora_id else None)
|
||||
# Print the outputs.
|
||||
generated_texts: List[str] = []
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
generated_texts.append(generated_text)
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
return generated_texts
|
||||
|
||||
|
||||
@pytest.mark.parametrize("tp_size", [1, 2, 4])
|
||||
def test_llama_lora(sql_lora_files, tp_size, num_gpus_available):
|
||||
if num_gpus_available < tp_size:
|
||||
pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")
|
||||
|
||||
llm = vllm.LLM(MODEL_PATH,
|
||||
enable_lora=True,
|
||||
max_num_seqs=16,
|
||||
max_loras=4,
|
||||
tensor_parallel_size=tp_size)
|
||||
|
||||
expected_no_lora_output = [
|
||||
"\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_75 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_76 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_77 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_78 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user]", # noqa: E501
|
||||
" Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? ", # noqa: E501
|
||||
"\n\n answer: 1\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_96 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a high tone mora with a gloss of /˧kot/ [kòt]? [/user] [assistant]\n\n answer: 2\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_97 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a high tone mora with a gloss of /˧kot/ [kòt]? [/user] [assistant]\n\n answer: 2\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_98 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one m", # noqa: E501
|
||||
" Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE candidate (people_id VARCHAR, unsure_rate INTEGER); CREATE TABLE people (sex VARCHAR, people_id VARCHAR)\n\n question: which gender got the highest average uncertain ratio. ", # noqa: E501
|
||||
" Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_60 (pick INTEGER, former_wnba_team VARCHAR)\n\n question: What pick was a player that previously played for the Minnesota Lynx? ", # noqa: E501
|
||||
"\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE", # noqa: E501
|
||||
]
|
||||
expected_lora_output = [
|
||||
" SELECT icao FROM table_name_74 WHERE airport = 'lilongwe international airport' ", # noqa: E501
|
||||
" SELECT nationality FROM table_name_11 WHERE elector = 'anchero pantaleone' ", # noqa: E501
|
||||
" SELECT one_mora FROM table_name_95 WHERE gloss = 'low tone mora with a gloss of /˩okiru/' [òkìɽɯ́] AND accented_mora = 'low tone mora with a gloss of /˩okiru/' [òkìɽɯ́] ", # noqa: E501
|
||||
" SELECT sex FROM people WHERE people_id IN (SELECT people_id FROM candidate GROUP BY sex ORDER BY COUNT(people_id) DESC LIMIT 1) ", # noqa: E501
|
||||
" SELECT pick FROM table_name_60 WHERE former_wnba_team = 'Minnesota Lynx' ", # noqa: E501
|
||||
" SELECT womens_doubles FROM table_28138035_4 WHERE mens_singles = 'Werner Schlager' " # noqa: E501
|
||||
]
|
||||
|
||||
print("lora adapter created")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=0) == expected_no_lora_output
|
||||
|
||||
print("lora 1")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=1) == expected_lora_output
|
||||
|
||||
print("no lora")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=0) == expected_no_lora_output
|
||||
|
||||
print("lora 2")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=2) == expected_lora_output
|
||||
|
||||
print("removing lora")
|
||||
|
||||
|
||||
def test_llama_tensor_parallel_equality(sql_lora_files, num_gpus_available):
|
||||
if num_gpus_available < 4:
|
||||
pytest.skip("Not enough GPUs for tensor parallelism 4")
|
||||
|
||||
llm_tp1 = vllm.LLM(MODEL_PATH,
|
||||
enable_lora=True,
|
||||
max_num_seqs=16,
|
||||
max_loras=4,
|
||||
tensor_parallel_size=1)
|
||||
output_tp1 = do_sample(llm_tp1, sql_lora_files, lora_id=1)
|
||||
|
||||
del llm_tp1
|
||||
cleanup_dist_env_and_memory()
|
||||
|
||||
llm_tp2 = vllm.LLM(MODEL_PATH,
|
||||
enable_lora=True,
|
||||
max_num_seqs=16,
|
||||
max_loras=4,
|
||||
tensor_parallel_size=2)
|
||||
output_tp2 = do_sample(llm_tp2, sql_lora_files, lora_id=1)
|
||||
|
||||
del llm_tp2
|
||||
cleanup_dist_env_and_memory()
|
||||
|
||||
assert output_tp1 == output_tp2
|
||||
|
||||
llm_tp4 = vllm.LLM(MODEL_PATH,
|
||||
enable_lora=True,
|
||||
max_num_seqs=16,
|
||||
max_loras=4,
|
||||
tensor_parallel_size=4)
|
||||
output_tp4 = do_sample(llm_tp4, sql_lora_files, lora_id=1)
|
||||
|
||||
del llm_tp4
|
||||
cleanup_dist_env_and_memory()
|
||||
|
||||
assert output_tp1 == output_tp4
|
||||
|
||||
|
||||
def test_llama_lora_warmup(sql_lora_files):
|
||||
"""Test that the LLM initialization works with a warmup LORA path and
|
||||
is more conservative"""
|
||||
|
||||
@ray.remote(num_gpus=1)
|
||||
def get_num_gpu_blocks_lora():
|
||||
llm = vllm.LLM(MODEL_PATH, enable_lora=True, max_num_seqs=16)
|
||||
num_gpu_blocks_lora_warmup = llm.llm_engine.cache_config.num_gpu_blocks
|
||||
return num_gpu_blocks_lora_warmup
|
||||
|
||||
@ray.remote(num_gpus=1)
|
||||
def get_num_gpu_blocks_no_lora():
|
||||
llm = vllm.LLM(MODEL_PATH, max_num_seqs=16)
|
||||
num_gpu_blocks_no_lora_warmup = (
|
||||
llm.llm_engine.cache_config.num_gpu_blocks)
|
||||
return num_gpu_blocks_no_lora_warmup
|
||||
|
||||
num_gpu_blocks_lora_warmup = ray.get(get_num_gpu_blocks_lora.remote())
|
||||
num_gpu_blocks_no_lora_warmup = ray.get(
|
||||
get_num_gpu_blocks_no_lora.remote())
|
||||
assert num_gpu_blocks_lora_warmup < num_gpu_blocks_no_lora_warmup, (
|
||||
"The warmup with lora should be more "
|
||||
"conservative than without lora, therefore the number of "
|
||||
"memory blocks for the KV cache should be "
|
||||
"less when using lora than when not using lora")
|
||||
161
tests/lora/test_llama_tp.py
Normal file
161
tests/lora/test_llama_tp.py
Normal file
@ -0,0 +1,161 @@
|
||||
from typing import List
|
||||
|
||||
import ray
|
||||
|
||||
import vllm
|
||||
from tests.utils import fork_new_process_for_each_test
|
||||
from vllm.lora.request import LoRARequest
|
||||
|
||||
from ..utils import multi_gpu_test
|
||||
|
||||
MODEL_PATH = "meta-llama/Llama-2-7b-hf"
|
||||
|
||||
EXPECTED_NO_LORA_OUTPUT = [
|
||||
"\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_75 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_76 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_77 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_78 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user]", # noqa: E501
|
||||
" Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? ", # noqa: E501
|
||||
"\n\n answer: 1\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_96 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a high tone mora with a gloss of /˧kot/ [kòt]? [/user] [assistant]\n\n answer: 2\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_97 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a high tone mora with a gloss of /˧kot/ [kòt]? [/user] [assistant]\n\n answer: 2\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_98 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one m", # noqa: E501
|
||||
" Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE candidate (people_id VARCHAR, unsure_rate INTEGER); CREATE TABLE people (sex VARCHAR, people_id VARCHAR)\n\n question: which gender got the highest average uncertain ratio. ", # noqa: E501
|
||||
" Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_60 (pick INTEGER, former_wnba_team VARCHAR)\n\n question: What pick was a player that previously played for the Minnesota Lynx? ", # noqa: E501
|
||||
"\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE", # noqa: E501
|
||||
]
|
||||
EXPECTED_LORA_OUTPUT = [
|
||||
" SELECT icao FROM table_name_74 WHERE airport = 'lilongwe international airport' ", # noqa: E501
|
||||
" SELECT nationality FROM table_name_11 WHERE elector = 'anchero pantaleone' ", # noqa: E501
|
||||
" SELECT one_mora FROM table_name_95 WHERE gloss = 'low tone mora with a gloss of /˩okiru/' [òkìɽɯ́] AND accented_mora = 'low tone mora with a gloss of /˩okiru/' [òkìɽɯ́] ", # noqa: E501
|
||||
" SELECT sex FROM people WHERE people_id IN (SELECT people_id FROM candidate GROUP BY sex ORDER BY COUNT(people_id) DESC LIMIT 1) ", # noqa: E501
|
||||
" SELECT pick FROM table_name_60 WHERE former_wnba_team = 'Minnesota Lynx' ", # noqa: E501
|
||||
" SELECT womens_doubles FROM table_28138035_4 WHERE mens_singles = 'Werner Schlager' " # noqa: E501
|
||||
]
|
||||
|
||||
|
||||
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
|
||||
prompts = [
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]", # noqa: E501
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]", # noqa: E501
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_95 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a low tone mora with a gloss of /˩okiru/ [òkìɽɯ́]? [/user] [assistant]", # noqa: E501
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE candidate (people_id VARCHAR, unsure_rate INTEGER); CREATE TABLE people (sex VARCHAR, people_id VARCHAR)\n\n question: which gender got the highest average uncertain ratio. [/user] [assistant]", # noqa: E501
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_60 (pick INTEGER, former_wnba_team VARCHAR)\n\n question: What pick was a player that previously played for the Minnesota Lynx? [/user] [assistant]", # noqa: E501
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]" # noqa: E501
|
||||
]
|
||||
sampling_params = vllm.SamplingParams(temperature=0,
|
||||
max_tokens=256,
|
||||
stop=["[/assistant]"])
|
||||
outputs = llm.generate(
|
||||
prompts,
|
||||
sampling_params,
|
||||
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
||||
if lora_id else None)
|
||||
# Print the outputs.
|
||||
generated_texts: List[str] = []
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
generated_texts.append(generated_text)
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
return generated_texts
|
||||
|
||||
|
||||
@fork_new_process_for_each_test
|
||||
def test_llama_lora(sql_lora_files):
|
||||
|
||||
llm = vllm.LLM(MODEL_PATH,
|
||||
enable_lora=True,
|
||||
max_num_seqs=16,
|
||||
max_loras=4,
|
||||
tensor_parallel_size=1)
|
||||
|
||||
print("lora adapter created")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=0) == EXPECTED_NO_LORA_OUTPUT
|
||||
|
||||
print("lora 1")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=1) == EXPECTED_LORA_OUTPUT
|
||||
|
||||
print("no lora")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=0) == EXPECTED_NO_LORA_OUTPUT
|
||||
|
||||
print("lora 2")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=2) == EXPECTED_LORA_OUTPUT
|
||||
|
||||
print("removing lora")
|
||||
|
||||
|
||||
@fork_new_process_for_each_test
|
||||
def test_llama_lora_warmup(sql_lora_files):
|
||||
"""Test that the LLM initialization works with a warmup LORA path and
|
||||
is more conservative"""
|
||||
|
||||
@ray.remote(num_gpus=1)
|
||||
def get_num_gpu_blocks_lora():
|
||||
llm = vllm.LLM(MODEL_PATH, enable_lora=True, max_num_seqs=16)
|
||||
num_gpu_blocks_lora_warmup = llm.llm_engine.cache_config.num_gpu_blocks
|
||||
return num_gpu_blocks_lora_warmup
|
||||
|
||||
@ray.remote(num_gpus=1)
|
||||
def get_num_gpu_blocks_no_lora():
|
||||
llm = vllm.LLM(MODEL_PATH, max_num_seqs=16)
|
||||
num_gpu_blocks_no_lora_warmup = (
|
||||
llm.llm_engine.cache_config.num_gpu_blocks)
|
||||
return num_gpu_blocks_no_lora_warmup
|
||||
|
||||
num_gpu_blocks_lora_warmup = ray.get(get_num_gpu_blocks_lora.remote())
|
||||
num_gpu_blocks_no_lora_warmup = ray.get(
|
||||
get_num_gpu_blocks_no_lora.remote())
|
||||
assert num_gpu_blocks_lora_warmup < num_gpu_blocks_no_lora_warmup, (
|
||||
"The warmup with lora should be more "
|
||||
"conservative than without lora, therefore the number of "
|
||||
"memory blocks for the KV cache should be "
|
||||
"less when using lora than when not using lora")
|
||||
|
||||
|
||||
@multi_gpu_test(num_gpus=4)
|
||||
@fork_new_process_for_each_test
|
||||
def test_llama_lora_tp4(sql_lora_files):
|
||||
|
||||
llm = vllm.LLM(
|
||||
MODEL_PATH,
|
||||
enable_lora=True,
|
||||
max_num_seqs=16,
|
||||
max_loras=4,
|
||||
tensor_parallel_size=4,
|
||||
)
|
||||
|
||||
print("lora adapter created")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=0) == EXPECTED_NO_LORA_OUTPUT
|
||||
|
||||
print("lora 1")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=1) == EXPECTED_LORA_OUTPUT
|
||||
|
||||
print("no lora")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=0) == EXPECTED_NO_LORA_OUTPUT
|
||||
|
||||
print("lora 2")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=2) == EXPECTED_LORA_OUTPUT
|
||||
|
||||
print("removing lora")
|
||||
|
||||
|
||||
@multi_gpu_test(num_gpus=4)
|
||||
@fork_new_process_for_each_test
|
||||
def test_llama_lora_tp4_fully_sharded_loras(sql_lora_files):
|
||||
|
||||
llm = vllm.LLM(
|
||||
MODEL_PATH,
|
||||
enable_lora=True,
|
||||
max_num_seqs=16,
|
||||
max_loras=4,
|
||||
tensor_parallel_size=4,
|
||||
fully_sharded_loras=True,
|
||||
)
|
||||
print("lora adapter created")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=0) == EXPECTED_NO_LORA_OUTPUT
|
||||
|
||||
print("lora 1")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=1) == EXPECTED_LORA_OUTPUT
|
||||
|
||||
print("no lora")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=0) == EXPECTED_NO_LORA_OUTPUT
|
||||
|
||||
print("lora 2")
|
||||
assert do_sample(llm, sql_lora_files, lora_id=2) == EXPECTED_LORA_OUTPUT
|
||||
|
||||
print("removing lora")
|
||||
@ -44,6 +44,11 @@ class ColumnParallelLinearWithShardedLoRA(ColumnParallelLinearWithLoRA):
|
||||
Based on S-LoRA, slicing happens along the rank dim.
|
||||
"""
|
||||
|
||||
# For all LoRA layers where the `base_layer` is `ColumnParallelLinear`,
|
||||
# their `lora_a` and `lora_b` have different sharding patterns. After
|
||||
# completing the `lora_a` GEMM , a gather operation is performed.
|
||||
# Therefore, the sharding of `lora_a` only needs to correspond with the
|
||||
# gather operation.
|
||||
def slice_lora_a(self, lora_a: torch.Tensor) -> torch.Tensor:
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
shard_size = self.lora_a_stacked.shape[2]
|
||||
|
||||
@ -451,6 +451,12 @@ class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):
|
||||
|
||||
def __init__(self, base_layer: ColumnParallelLinear) -> None:
|
||||
super().__init__()
|
||||
# The base_layer type is ColumnParallelLinear or
|
||||
# MergedColumnParallelLinear, their weight sharding logic is
|
||||
# inconsistent when TP is greater than 1.
|
||||
self.is_merged_col_linear = type(
|
||||
base_layer) is MergedColumnParallelLinear
|
||||
|
||||
self.base_layer = base_layer
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.input_size = self.base_layer.input_size
|
||||
@ -508,14 +514,30 @@ class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):
|
||||
return lora_a
|
||||
|
||||
def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
|
||||
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
|
||||
shard_size = self.output_dim
|
||||
start_idx = tensor_model_parallel_rank * shard_size
|
||||
end_idx = (tensor_model_parallel_rank + 1) * shard_size
|
||||
lora_b = lora_b[:, start_idx:end_idx]
|
||||
# Applicable to cases where the base_layer is
|
||||
# MergedColumnParallelLinear.
|
||||
if self.is_merged_col_linear:
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
shard_size = self.output_size // 2
|
||||
offset = lora_b.shape[-1] // 2
|
||||
|
||||
left_weight = lora_b[:, tp_rank * shard_size:(tp_rank + 1) *
|
||||
shard_size]
|
||||
right_weight = lora_b[:, offset + tp_rank * shard_size:offset +
|
||||
(tp_rank + 1) * shard_size]
|
||||
lora_b = torch.cat([left_weight, right_weight], dim=1)
|
||||
# Applicable to cases where the base_layer is
|
||||
# ColumnParallelLinear.
|
||||
else:
|
||||
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
|
||||
shard_size = self.output_dim
|
||||
start_idx = tensor_model_parallel_rank * shard_size
|
||||
end_idx = (tensor_model_parallel_rank + 1) * shard_size
|
||||
lora_b = lora_b[:, start_idx:end_idx]
|
||||
return lora_b
|
||||
|
||||
def slice_bias(self, bias: torch.Tensor) -> torch.Tensor:
|
||||
# TODO: Fix the slicing logic of bias.
|
||||
if bias is None:
|
||||
return bias
|
||||
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
|
||||
@ -779,7 +801,7 @@ class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
|
||||
class QKVParallelLinearWithLora(ColumnParallelLinearWithLoRA):
|
||||
"""
|
||||
ColumnParallelLinear layer that is specifically designed for
|
||||
qkv_proj. Certain models, such as chtglm3 and baichuan-7b,
|
||||
qkv_proj. Certain models, such as chatglm3 and baichuan-7b,
|
||||
only contains a single LoRA within their qkv_proj layer.
|
||||
|
||||
During inference with Tensor Parallel, the weights of lora_b
|
||||
|
||||
@ -760,7 +760,7 @@ class ChatGLMForCausalLM(ChatGLMBaseModel, SupportsLoRA, SupportsPP,
|
||||
config = vllm_config.model_config.hf_config
|
||||
# Initialize VL
|
||||
if hasattr(config, "visual"):
|
||||
return ChatGLM(vllm_config=vllm_config, prefix=prefix)
|
||||
return ChatGLMV(vllm_config=vllm_config, prefix=prefix)
|
||||
# Initialize LLM
|
||||
else:
|
||||
return ChatGLMV(vllm_config=vllm_config, prefix=prefix)
|
||||
return ChatGLM(vllm_config=vllm_config, prefix=prefix)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user