[Model]Refactor MiniCPMV (#7020)
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
This commit is contained in:
parent
83c644fe7e
commit
179a6a36f2
@ -220,7 +220,7 @@ Vision Language Models
|
|||||||
- Phi-3-Vision
|
- Phi-3-Vision
|
||||||
- :code:`microsoft/Phi-3-vision-128k-instruct`, etc.
|
- :code:`microsoft/Phi-3-vision-128k-instruct`, etc.
|
||||||
-
|
-
|
||||||
* - :code:`MiniCPM-V`
|
* - :code:`MiniCPMV`
|
||||||
- MiniCPM-V
|
- MiniCPM-V
|
||||||
- :code:`openbmb/MiniCPM-V-2` (see note), :code:`openbmb/MiniCPM-Llama3-V-2_5`, etc.
|
- :code:`openbmb/MiniCPM-V-2` (see note), :code:`openbmb/MiniCPM-Llama3-V-2_5`, etc.
|
||||||
-
|
-
|
||||||
|
|||||||
296
vllm/model_executor/models/idefics2_vision_model.py
Normal file
296
vllm/model_executor/models/idefics2_vision_model.py
Normal file
@ -0,0 +1,296 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
|
||||||
|
# adapted from https://github.com/huggingface/transformers/blob/v4.43.2/src/transformers/models/idefics2/modeling_idefics2.py
|
||||||
|
# Copyright 2024 The vLLM team.
|
||||||
|
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""PyTorch Idefics2 model."""
|
||||||
|
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from transformers.models.idefics2.configuration_idefics2 import (
|
||||||
|
Idefics2Config, Idefics2VisionConfig)
|
||||||
|
from xformers import ops as xops
|
||||||
|
|
||||||
|
from vllm.distributed import divide, get_tensor_model_parallel_world_size
|
||||||
|
from vllm.model_executor.layers.activation import get_act_fn
|
||||||
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||||
|
QKVParallelLinear,
|
||||||
|
RowParallelLinear)
|
||||||
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||||
|
|
||||||
|
|
||||||
|
class Idefics2VisionEmbeddings(nn.Module):
|
||||||
|
"""
|
||||||
|
This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings
|
||||||
|
` to enable images of variable
|
||||||
|
resolution.
|
||||||
|
|
||||||
|
The modifications are adapted from [Patch n' Pack: NaViT, a Vision
|
||||||
|
Transformer for any Aspect Ratio and Resolution](https://arxiv.org/abs/2307.06304)
|
||||||
|
which allows treating images in their native aspect ratio and without the
|
||||||
|
need to resize them to the same fixed size. In particular, we start from the
|
||||||
|
original pre-trained SigLIP model(which uses images of fixed-size square
|
||||||
|
images) and adapt it by training on images of variable resolutions.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, config: Idefics2VisionConfig):
|
||||||
|
super().__init__()
|
||||||
|
self.embed_dim = config.hidden_size
|
||||||
|
self.image_size = config.image_size
|
||||||
|
self.patch_size = config.patch_size
|
||||||
|
self.patch_embedding = nn.Conv2d(
|
||||||
|
in_channels=config.num_channels,
|
||||||
|
out_channels=self.embed_dim,
|
||||||
|
kernel_size=self.patch_size,
|
||||||
|
stride=self.patch_size,
|
||||||
|
padding="valid",
|
||||||
|
)
|
||||||
|
self.num_patches_per_side = self.image_size // self.patch_size
|
||||||
|
self.num_patches = self.num_patches_per_side**2
|
||||||
|
self.num_positions = self.num_patches
|
||||||
|
self.position_embedding = nn.Embedding(self.num_positions,
|
||||||
|
self.embed_dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
pixel_values: torch.FloatTensor,
|
||||||
|
patch_attention_mask: torch.BoolTensor,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
batch_size, _, max_im_h, max_im_w = pixel_values.shape
|
||||||
|
patch_embeds = self.patch_embedding(pixel_values)
|
||||||
|
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
||||||
|
max_nb_patches_h, max_nb_patches_w = (
|
||||||
|
max_im_h // self.patch_size,
|
||||||
|
max_im_w // self.patch_size,
|
||||||
|
)
|
||||||
|
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0,
|
||||||
|
1 / self.num_patches_per_side)
|
||||||
|
position_ids = torch.full(size=(batch_size,
|
||||||
|
max_nb_patches_h * max_nb_patches_w),
|
||||||
|
fill_value=0)
|
||||||
|
|
||||||
|
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
|
||||||
|
nb_patches_h = p_attn_mask[:, 0].sum()
|
||||||
|
nb_patches_w = p_attn_mask[0].sum()
|
||||||
|
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
|
||||||
|
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
|
||||||
|
bucket_coords_h = torch.bucketize(fractional_coords_h,
|
||||||
|
boundaries,
|
||||||
|
right=True)
|
||||||
|
bucket_coords_w = torch.bucketize(fractional_coords_w,
|
||||||
|
boundaries,
|
||||||
|
right=True)
|
||||||
|
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side +
|
||||||
|
bucket_coords_w).flatten()
|
||||||
|
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
|
||||||
|
position_ids = position_ids.to(self.position_embedding.weight.device)
|
||||||
|
embeddings = embeddings + self.position_embedding(position_ids)
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
|
||||||
|
class Idefics2VisionAttention(nn.Module):
|
||||||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: Idefics2Config,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.embed_dim = config.hidden_size
|
||||||
|
self.num_heads = config.num_attention_heads
|
||||||
|
self.head_dim = self.embed_dim // self.num_heads
|
||||||
|
if self.head_dim * self.num_heads != self.embed_dim:
|
||||||
|
raise ValueError(
|
||||||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" # noqa: E501
|
||||||
|
f" {self.num_heads}).")
|
||||||
|
self.scale = self.head_dim**-0.5
|
||||||
|
self.dropout = config.attention_dropout
|
||||||
|
self.qkv_proj = QKVParallelLinear(
|
||||||
|
self.embed_dim,
|
||||||
|
self.head_dim,
|
||||||
|
self.num_heads,
|
||||||
|
quant_config=quant_config,
|
||||||
|
)
|
||||||
|
self.out_proj = RowParallelLinear(
|
||||||
|
self.embed_dim,
|
||||||
|
self.embed_dim,
|
||||||
|
bias=True,
|
||||||
|
quant_config=quant_config,
|
||||||
|
)
|
||||||
|
self.tp_size = get_tensor_model_parallel_world_size()
|
||||||
|
self.num_heads_per_partition = divide(self.num_heads, self.tp_size)
|
||||||
|
self.is_causal = False
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
batch_size, q_len, _ = hidden_states.size()
|
||||||
|
qkv, _ = self.qkv_proj(
|
||||||
|
hidden_states
|
||||||
|
) # batch_size, q_len, 3 * num_heads_per_partition * head_dim
|
||||||
|
query_states, key_states, value_states = qkv.chunk(3, dim=-1)
|
||||||
|
query_states = query_states.view(batch_size, q_len,
|
||||||
|
self.num_heads_per_partition,
|
||||||
|
self.head_dim)
|
||||||
|
key_states = key_states.view(batch_size, q_len,
|
||||||
|
self.num_heads_per_partition,
|
||||||
|
self.head_dim)
|
||||||
|
value_states = value_states.view(batch_size, q_len,
|
||||||
|
self.num_heads_per_partition,
|
||||||
|
self.head_dim)
|
||||||
|
# see: https://facebookresearch.github.io/xformers/components/ops.html
|
||||||
|
out = xops.memory_efficient_attention_forward(
|
||||||
|
query_states,
|
||||||
|
key_states,
|
||||||
|
value_states,
|
||||||
|
p=self.dropout,
|
||||||
|
scale=self.scale,
|
||||||
|
)
|
||||||
|
out = out.view(batch_size, q_len, -1)
|
||||||
|
attn_output, _ = self.out_proj(out)
|
||||||
|
return attn_output
|
||||||
|
|
||||||
|
|
||||||
|
class Idefics2VisionMLP(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: Idefics2Config,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.activation_fn = get_act_fn(config.hidden_act)
|
||||||
|
self.fc1 = ColumnParallelLinear(
|
||||||
|
config.hidden_size,
|
||||||
|
config.intermediate_size,
|
||||||
|
bias=True,
|
||||||
|
quant_config=quant_config,
|
||||||
|
)
|
||||||
|
self.fc2 = RowParallelLinear(
|
||||||
|
config.intermediate_size,
|
||||||
|
config.hidden_size,
|
||||||
|
bias=True,
|
||||||
|
quant_config=quant_config,
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||||
|
hidden_states, _ = self.fc1(hidden_states)
|
||||||
|
hidden_states = self.activation_fn(hidden_states)
|
||||||
|
hidden_states, _ = self.fc2(hidden_states)
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class Idefics2EncoderLayer(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, config: Idefics2Config):
|
||||||
|
super().__init__()
|
||||||
|
self.embed_dim = config.hidden_size
|
||||||
|
self.self_attn = Idefics2VisionAttention(config)
|
||||||
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim,
|
||||||
|
eps=config.layer_norm_eps)
|
||||||
|
self.mlp = Idefics2VisionMLP(config)
|
||||||
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim,
|
||||||
|
eps=config.layer_norm_eps)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
hidden_states (`torch.FloatTensor`):
|
||||||
|
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
||||||
|
|
||||||
|
"""
|
||||||
|
residual = hidden_states
|
||||||
|
hidden_states = self.layer_norm1(hidden_states)
|
||||||
|
hidden_states = self.self_attn(hidden_states)
|
||||||
|
hidden_states = residual + hidden_states
|
||||||
|
residual = hidden_states
|
||||||
|
hidden_states = self.layer_norm2(hidden_states)
|
||||||
|
hidden_states = self.mlp(hidden_states)
|
||||||
|
hidden_states = residual + hidden_states
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class Idefics2Encoder(nn.Module):
|
||||||
|
"""
|
||||||
|
Transformer encoder consisting of `config.num_hidden_layers` self attention
|
||||||
|
layers. Each layer is a
|
||||||
|
[`Idefics2EncoderLayer`].
|
||||||
|
|
||||||
|
Args:
|
||||||
|
config: Idefics2Config
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, config: Idefics2Config):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.layers = nn.ModuleList([
|
||||||
|
Idefics2EncoderLayer(config)
|
||||||
|
for _ in range(config.num_hidden_layers)
|
||||||
|
])
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
inputs_embeds: torch.Tensor,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
r"""
|
||||||
|
Args:
|
||||||
|
inputs_embeds (torch.Tensor):
|
||||||
|
Optionally, instead of passing `input_ids` you can choose to
|
||||||
|
directly pass an embedded representation.
|
||||||
|
This is useful if you want more control over how to convert
|
||||||
|
`input_ids` indices into associated vectorsthan the model's
|
||||||
|
internal embedding lookup matrix.
|
||||||
|
"""
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
for encoder_layer in self.layers:
|
||||||
|
layer_outputs = encoder_layer(hidden_states)
|
||||||
|
hidden_states = layer_outputs
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class Idefics2VisionTransformer(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, config: Idefics2VisionConfig):
|
||||||
|
super().__init__()
|
||||||
|
embed_dim = config.hidden_size
|
||||||
|
self.config = config
|
||||||
|
self.embeddings = Idefics2VisionEmbeddings(config)
|
||||||
|
self.encoder = Idefics2Encoder(config)
|
||||||
|
self.post_layernorm = nn.LayerNorm(embed_dim,
|
||||||
|
eps=config.layer_norm_eps)
|
||||||
|
|
||||||
|
def get_input_embeddings(self):
|
||||||
|
return self.embeddings
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
pixel_values,
|
||||||
|
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
||||||
|
) -> torch.tensor:
|
||||||
|
hidden_states = self.embeddings(
|
||||||
|
pixel_values=pixel_values,
|
||||||
|
patch_attention_mask=patch_attention_mask)
|
||||||
|
encoder_outputs = self.encoder(hidden_states)
|
||||||
|
last_hidden_state = self.post_layernorm(encoder_outputs)
|
||||||
|
return last_hidden_state
|
||||||
File diff suppressed because it is too large
Load Diff
@ -100,7 +100,7 @@ def _get_unpad_data(attention_mask):
|
|||||||
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
||||||
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
||||||
cu_seqlens = F.pad(
|
cu_seqlens = F.pad(
|
||||||
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
||||||
return (
|
return (
|
||||||
indices,
|
indices,
|
||||||
cu_seqlens,
|
cu_seqlens,
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user