[Frontend] OpenAI server: propagate usage accounting to FastAPI middleware layer (#8672)
This commit is contained in:
parent
3e073e66f1
commit
1ac3de09cd
@ -107,6 +107,11 @@ class UsageInfo(OpenAIBaseModel):
|
||||
completion_tokens: Optional[int] = 0
|
||||
|
||||
|
||||
class RequestResponseMetadata(BaseModel):
|
||||
request_id: str
|
||||
final_usage_info: Optional[UsageInfo] = None
|
||||
|
||||
|
||||
class JsonSchemaResponseFormat(OpenAIBaseModel):
|
||||
name: str
|
||||
description: Optional[str] = None
|
||||
|
||||
@ -22,7 +22,8 @@ from vllm.entrypoints.openai.protocol import (
|
||||
ChatCompletionRequest, ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
|
||||
ChatCompletionStreamResponse, ChatMessage, DeltaFunctionCall, DeltaMessage,
|
||||
DeltaToolCall, ErrorResponse, FunctionCall, ToolCall, UsageInfo)
|
||||
DeltaToolCall, ErrorResponse, FunctionCall, RequestResponseMetadata,
|
||||
ToolCall, UsageInfo)
|
||||
from vllm.entrypoints.openai.serving_engine import (BaseModelPath,
|
||||
LoRAModulePath,
|
||||
OpenAIServing,
|
||||
@ -175,6 +176,11 @@ class OpenAIServingChat(OpenAIServing):
|
||||
"--enable-auto-tool-choice and --tool-call-parser to be set")
|
||||
|
||||
request_id = f"chat-{random_uuid()}"
|
||||
|
||||
request_metadata = RequestResponseMetadata(request_id=request_id)
|
||||
if raw_request:
|
||||
raw_request.state.request_metadata = request_metadata
|
||||
|
||||
try:
|
||||
guided_decode_logits_processor = (
|
||||
await self._guided_decode_logits_processor(request, tokenizer))
|
||||
@ -241,11 +247,13 @@ class OpenAIServingChat(OpenAIServing):
|
||||
# Streaming response
|
||||
if request.stream:
|
||||
return self.chat_completion_stream_generator(
|
||||
request, result_generator, request_id, conversation, tokenizer)
|
||||
request, result_generator, request_id, conversation, tokenizer,
|
||||
request_metadata)
|
||||
|
||||
try:
|
||||
return await self.chat_completion_full_generator(
|
||||
request, result_generator, request_id, conversation, tokenizer)
|
||||
request, result_generator, request_id, conversation, tokenizer,
|
||||
request_metadata)
|
||||
except ValueError as e:
|
||||
# TODO: Use a vllm-specific Validation Error
|
||||
return self.create_error_response(str(e))
|
||||
@ -262,6 +270,7 @@ class OpenAIServingChat(OpenAIServing):
|
||||
request_id: str,
|
||||
conversation: List[ConversationMessage],
|
||||
tokenizer: AnyTokenizer,
|
||||
request_metadata: RequestResponseMetadata,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
model_name = self.base_model_paths[0].name
|
||||
created_time = int(time.time())
|
||||
@ -580,6 +589,13 @@ class OpenAIServingChat(OpenAIServing):
|
||||
exclude_unset=True, exclude_none=True))
|
||||
yield f"data: {final_usage_data}\n\n"
|
||||
|
||||
# report to FastAPI middleware aggregate usage across all choices
|
||||
num_completion_tokens = sum(previous_num_tokens)
|
||||
request_metadata.final_usage_info = UsageInfo(
|
||||
prompt_tokens=num_prompt_tokens,
|
||||
completion_tokens=num_completion_tokens,
|
||||
total_tokens=num_prompt_tokens + num_completion_tokens)
|
||||
|
||||
except ValueError as e:
|
||||
# TODO: Use a vllm-specific Validation Error
|
||||
logger.error("error in chat completion stream generator: %s", e)
|
||||
@ -595,6 +611,7 @@ class OpenAIServingChat(OpenAIServing):
|
||||
request_id: str,
|
||||
conversation: List[ConversationMessage],
|
||||
tokenizer: AnyTokenizer,
|
||||
request_metadata: RequestResponseMetadata,
|
||||
) -> Union[ErrorResponse, ChatCompletionResponse]:
|
||||
|
||||
model_name = self.base_model_paths[0].name
|
||||
@ -714,6 +731,9 @@ class OpenAIServingChat(OpenAIServing):
|
||||
completion_tokens=num_generated_tokens,
|
||||
total_tokens=num_prompt_tokens + num_generated_tokens,
|
||||
)
|
||||
|
||||
request_metadata.final_usage_info = usage
|
||||
|
||||
response = ChatCompletionResponse(
|
||||
id=request_id,
|
||||
created=created_time,
|
||||
|
||||
@ -18,7 +18,9 @@ from vllm.entrypoints.openai.protocol import (CompletionLogProbs,
|
||||
CompletionResponseChoice,
|
||||
CompletionResponseStreamChoice,
|
||||
CompletionStreamResponse,
|
||||
ErrorResponse, UsageInfo)
|
||||
ErrorResponse,
|
||||
RequestResponseMetadata,
|
||||
UsageInfo)
|
||||
# yapf: enable
|
||||
from vllm.entrypoints.openai.serving_engine import (BaseModelPath,
|
||||
LoRAModulePath,
|
||||
@ -94,6 +96,10 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
request_id = f"cmpl-{random_uuid()}"
|
||||
created_time = int(time.time())
|
||||
|
||||
request_metadata = RequestResponseMetadata(request_id=request_id)
|
||||
if raw_request:
|
||||
raw_request.state.request_metadata = request_metadata
|
||||
|
||||
# Schedule the request and get the result generator.
|
||||
generators: List[AsyncGenerator[RequestOutput, None]] = []
|
||||
try:
|
||||
@ -165,13 +171,15 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
|
||||
# Streaming response
|
||||
if stream:
|
||||
return self.completion_stream_generator(request,
|
||||
result_generator,
|
||||
request_id,
|
||||
created_time,
|
||||
model_name,
|
||||
num_prompts=len(prompts),
|
||||
tokenizer=tokenizer)
|
||||
return self.completion_stream_generator(
|
||||
request,
|
||||
result_generator,
|
||||
request_id,
|
||||
created_time,
|
||||
model_name,
|
||||
num_prompts=len(prompts),
|
||||
tokenizer=tokenizer,
|
||||
request_metadata=request_metadata)
|
||||
|
||||
# Non-streaming response
|
||||
final_res_batch: List[Optional[RequestOutput]] = [None] * len(prompts)
|
||||
@ -198,6 +206,7 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
created_time,
|
||||
model_name,
|
||||
tokenizer,
|
||||
request_metadata,
|
||||
)
|
||||
except asyncio.CancelledError:
|
||||
return self.create_error_response("Client disconnected")
|
||||
@ -227,6 +236,7 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
model_name: str,
|
||||
num_prompts: int,
|
||||
tokenizer: AnyTokenizer,
|
||||
request_metadata: RequestResponseMetadata,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
num_choices = 1 if request.n is None else request.n
|
||||
previous_text_lens = [0] * num_choices * num_prompts
|
||||
@ -346,6 +356,14 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
exclude_unset=False, exclude_none=True))
|
||||
yield f"data: {final_usage_data}\n\n"
|
||||
|
||||
# report to FastAPI middleware aggregate usage across all choices
|
||||
total_prompt_tokens = sum(num_prompt_tokens)
|
||||
total_completion_tokens = sum(previous_num_tokens)
|
||||
request_metadata.final_usage_info = UsageInfo(
|
||||
prompt_tokens=total_prompt_tokens,
|
||||
completion_tokens=total_completion_tokens,
|
||||
total_tokens=total_prompt_tokens + total_completion_tokens)
|
||||
|
||||
except ValueError as e:
|
||||
# TODO: Use a vllm-specific Validation Error
|
||||
data = self.create_streaming_error_response(str(e))
|
||||
@ -360,6 +378,7 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
created_time: int,
|
||||
model_name: str,
|
||||
tokenizer: AnyTokenizer,
|
||||
request_metadata: RequestResponseMetadata,
|
||||
) -> CompletionResponse:
|
||||
choices: List[CompletionResponseChoice] = []
|
||||
num_prompt_tokens = 0
|
||||
@ -433,6 +452,8 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
total_tokens=num_prompt_tokens + num_generated_tokens,
|
||||
)
|
||||
|
||||
request_metadata.final_usage_info = usage
|
||||
|
||||
return CompletionResponse(
|
||||
id=request_id,
|
||||
created=created_time,
|
||||
|
||||
Loading…
Reference in New Issue
Block a user