[Core] Introduce DistributedGPUExecutor abstract class (#4348)

This commit is contained in:
Nick Hill 2024-04-26 21:14:26 -07:00 committed by GitHub
parent aba47be3fe
commit 258a2c58d0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 122 additions and 86 deletions

View File

@ -0,0 +1,114 @@
from abc import abstractmethod
from typing import Any, Dict, Optional, Set, Tuple
from vllm.executor.executor_base import ExecutorAsyncBase
from vllm.executor.gpu_executor import GPUExecutor
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.sequence import SamplerOutput
logger = init_logger(__name__)
class DistributedGPUExecutor(GPUExecutor):
"""Abstract superclass of multi-GPU executor implementations."""
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Determine the number of available KV blocks.
This invokes `determine_num_available_blocks` on each worker and takes
the min of the results, guaranteeing that the selected cache sizes are
compatible with all workers.
Returns:
- tuple[num_gpu_blocks, num_cpu_blocks]
"""
# Get the maximum number of blocks that can be allocated on GPU and CPU.
num_blocks = self._run_workers("determine_num_available_blocks", )
# Since we use a shared centralized controller, we take the minimum
# number of blocks across all workers to make sure all the memory
# operators can be applied to all workers.
num_gpu_blocks = min(b[0] for b in num_blocks)
num_cpu_blocks = min(b[1] for b in num_blocks)
return num_gpu_blocks, num_cpu_blocks
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""Initialize the KV cache in all workers.
"""
# NOTE: We log here to avoid multiple logs when number of workers is
# greater than one. We could log in the engine, but not all executors
# have GPUs.
logger.info("# GPU blocks: %d, # CPU blocks: %d", num_gpu_blocks,
num_cpu_blocks)
self.cache_config.num_gpu_blocks = num_gpu_blocks
self.cache_config.num_cpu_blocks = num_cpu_blocks
self._run_workers("initialize_cache",
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks)
def execute_model(self, *args, **kwargs) -> SamplerOutput:
all_outputs = self._run_workers("execute_model",
driver_args=args,
driver_kwargs=kwargs)
# Only the driver worker returns the sampling results.
return all_outputs[0]
def add_lora(self, lora_request: LoRARequest) -> bool:
assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
return self._run_workers(
"add_lora",
lora_request=lora_request,
)
def remove_lora(self, lora_id: int) -> bool:
assert lora_id > 0, "lora_id must be greater than 0."
return self._run_workers(
"remove_lora",
lora_id=lora_id,
)
def list_loras(self) -> Set[int]:
return self._run_workers("list_loras")
@abstractmethod
def _run_workers(
self,
method: str,
*args,
driver_args: Optional[Tuple[Any, ...]] = None,
driver_kwargs: Optional[Dict[str, Any]] = None,
max_concurrent_workers: Optional[int] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers."""
raise NotImplementedError
class DistributedGPUExecutorAsync(DistributedGPUExecutor, ExecutorAsyncBase):
@abstractmethod
async def _run_workers_async(
self,
method: str,
*args,
driver_args: Optional[Tuple[Any, ...]] = None,
driver_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers."""
raise NotImplementedError
async def execute_model_async(self, *args, **kwargs) -> SamplerOutput:
all_outputs = await self._run_workers_async("execute_model",
driver_args=args,
driver_kwargs=kwargs)
# Only the driver worker returns the sampling results.
return all_outputs[0]

View File

@ -3,12 +3,12 @@ import os
import pickle
from collections import defaultdict
from itertools import islice, repeat
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase
from vllm.executor.distributed_gpu_executor import ( # yapf: disable
DistributedGPUExecutor, DistributedGPUExecutorAsync)
from vllm.executor.ray_utils import RayWorkerWrapper, ray
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
get_vllm_instance_id, make_async)
@ -27,7 +27,7 @@ logger = init_logger(__name__)
USE_RAY_COMPILED_DAG = bool(os.getenv("VLLM_USE_RAY_COMPILED_DAG", 0))
class RayGPUExecutor(ExecutorBase):
class RayGPUExecutor(DistributedGPUExecutor):
def _init_executor(self) -> None:
assert (not self.speculative_config
@ -179,50 +179,9 @@ class RayGPUExecutor(ExecutorBase):
self._run_workers("init_worker", all_kwargs=init_worker_all_kwargs)
self._run_workers("init_device")
self._run_workers(
"load_model",
max_concurrent_workers=self.parallel_config.
max_parallel_loading_workers,
)
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Determine the number of available KV blocks.
This invokes `determine_num_available_blocks` on each worker and takes
the min of the results, guaranteeing that the selected cache sizes are
compatible with all workers.
Returns:
- Tuple[num_gpu_blocks, num_cpu_blocks]
"""
# Get the maximum number of blocks that can be allocated on GPU and CPU.
num_blocks = self._run_workers("determine_num_available_blocks", )
# Since we use a shared centralized controller, we take the minimum
# number of blocks across all workers to make sure all the memory
# operators can be applied to all workers.
num_gpu_blocks = min(b[0] for b in num_blocks)
num_cpu_blocks = min(b[1] for b in num_blocks)
return num_gpu_blocks, num_cpu_blocks
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""Initialize the KV cache in all workers.
"""
# NOTE: We log here to avoid multiple logs when number of workers is
# greater than one. We could log in the engine, but not all executors
# have GPUs.
logger.info("# GPU blocks: %d, # CPU blocks: %d", num_gpu_blocks,
num_cpu_blocks)
self.cache_config.num_gpu_blocks = num_gpu_blocks
self.cache_config.num_cpu_blocks = num_cpu_blocks
self._run_workers("initialize_cache",
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks)
self._run_workers("load_model",
max_concurrent_workers=self.parallel_config.
max_parallel_loading_workers)
def execute_model(self,
seq_group_metadata_list: List[SequenceGroupMetadata],
@ -244,23 +203,6 @@ class RayGPUExecutor(ExecutorBase):
output = all_outputs[0]
return output
def add_lora(self, lora_request: LoRARequest) -> bool:
assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
return self._run_workers(
"add_lora",
lora_request=lora_request,
)
def remove_lora(self, lora_id: int) -> bool:
assert lora_id > 0, "lora_id must be greater than 0."
return self._run_workers(
"remove_lora",
lora_id=lora_id,
)
def list_loras(self) -> Set[int]:
return self._run_workers("list_loras")
def _run_workers(
self,
method: str,
@ -378,7 +320,7 @@ class RayGPUExecutor(ExecutorBase):
f"Dead Workers: {dead_actors}. ")
class RayGPUExecutorAsync(RayGPUExecutor, ExecutorAsyncBase):
class RayGPUExecutorAsync(RayGPUExecutor, DistributedGPUExecutorAsync):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@ -409,23 +351,3 @@ class RayGPUExecutorAsync(RayGPUExecutor, ExecutorAsyncBase):
all_outputs = await asyncio.gather(*coros)
return all_outputs
async def execute_model_async(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
) -> SamplerOutput:
all_outputs = await self._run_workers_async(
"execute_model",
driver_kwargs={
"seq_group_metadata_list": seq_group_metadata_list,
"blocks_to_swap_in": blocks_to_swap_in,
"blocks_to_swap_out": blocks_to_swap_out,
"blocks_to_copy": blocks_to_copy,
})
# Only the driver worker returns the sampling results.
output = all_outputs[0]
return output