[CI] Organizing performance benchmark files (#7616)

This commit is contained in:
Kuntai Du 2024-08-19 22:43:54 -07:00 committed by GitHub
parent f4fc7337bf
commit 3d8a5f063d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 37 additions and 25 deletions

View File

@ -34,17 +34,18 @@ See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performan
Performance benchmark will be triggered when:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label.
- Every commit for those PRs with `perf-benchmarks` label AND `ready` label.
Nightly benchmark will be triggered when:
- Every commit for those PRs with `nightly-benchmarks` label.
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.
## Performance benchmark details
See [descriptions.md](tests/descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
#### Latency test
@ -68,7 +69,7 @@ Here is an example of one test inside `latency-tests.json`:
In this example:
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-benchmarks-suite.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.

View File

@ -21,7 +21,7 @@ steps:
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8

View File

@ -174,8 +174,8 @@ if __name__ == "__main__":
# document the result
with open(results_folder / "benchmark_results.md", "w") as f:
results = read_markdown(
"../.buildkite/nightly-benchmarks/tests/descriptions.md")
results = read_markdown("../.buildkite/nightly-benchmarks/" +
"performance-benchmarks-descriptions.md")
results = results.format(
latency_tests_markdown_table=latency_md_table,
throughput_tests_markdown_table=throughput_md_table,

View File

@ -37,9 +37,9 @@ check_hf_token() {
ensure_sharegpt_downloaded() {
local FILE=ShareGPT_V3_unfiltered_cleaned_split.json
if [ ! -f "$FILE" ]; then
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/$FILE
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/$FILE
else
echo "$FILE already exists."
echo "$FILE already exists."
fi
}
@ -68,11 +68,29 @@ wait_for_server() {
done' && return 0 || return 1
}
kill_gpu_processes() {
# kill all processes on GPU.
kill_processes_launched_by_current_bash() {
# Kill all python processes launched from current bash script
current_shell_pid=$$
processes=$(ps -eo pid,ppid,command | awk -v ppid="$current_shell_pid" -v proc="$1" '$2 == ppid && $3 ~ proc {print $1}')
if [ -n "$processes" ]; then
echo "Killing the following processes matching '$1':"
echo "$processes"
echo "$processes" | xargs kill -9
else
echo "No processes found matching '$1'."
fi
}
kill_gpu_processes() {
ps -aux
lsof -t -i:8000 | xargs -r kill -9
pkill -f pt_main_thread
# this line doesn't work now
# ps aux | grep python | grep openai | awk '{print $2}' | xargs -r kill -9
pkill -f python3
pkill -f /usr/bin/python3
ps aux | grep python | grep openai | awk '{print $2}' | xargs -r kill -9
ps -e | grep pt_main_thread | awk '{print $1}' | xargs kill -9
# wait until GPU memory usage smaller than 1GB
while [ $(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1) -ge 1000 ]; do
@ -82,11 +100,6 @@ kill_gpu_processes() {
# remove vllm config file
rm -rf ~/.config/vllm
# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}
upload_to_buildkite() {
@ -104,7 +117,7 @@ upload_to_buildkite() {
fi
# Use the determined command to annotate and upload artifacts
$BUILDKITE_AGENT_COMMAND annotate --style "info" --context "$BUILDKITE_LABEL-benchmark-results" < $RESULTS_FOLDER/benchmark_results.md
$BUILDKITE_AGENT_COMMAND annotate --style "info" --context "$BUILDKITE_LABEL-benchmark-results" <$RESULTS_FOLDER/benchmark_results.md
$BUILDKITE_AGENT_COMMAND artifact upload "$RESULTS_FOLDER/*"
}
@ -156,7 +169,7 @@ run_latency_tests() {
latency_command: $latency,
gpu_type: $gpu
}')
echo "$jq_output" > "$RESULTS_FOLDER/$test_name.commands"
echo "$jq_output" >"$RESULTS_FOLDER/$test_name.commands"
# run the benchmark
eval "$latency_command"
@ -166,7 +179,6 @@ run_latency_tests() {
done
}
run_throughput_tests() {
# run throughput tests using `benchmark_throughput.py`
# $1: a json file specifying throughput test cases
@ -214,7 +226,7 @@ run_throughput_tests() {
throughput_command: $command,
gpu_type: $gpu
}')
echo "$jq_output" > "$RESULTS_FOLDER/$test_name.commands"
echo "$jq_output" >"$RESULTS_FOLDER/$test_name.commands"
# run the benchmark
eval "$throughput_command"
@ -246,7 +258,6 @@ run_serving_tests() {
continue
fi
# get client and server arguments
server_params=$(echo "$params" | jq -r '.server_parameters')
client_params=$(echo "$params" | jq -r '.client_parameters')
@ -324,7 +335,7 @@ run_serving_tests() {
client_command: $client,
gpu_type: $gpu
}')
echo "$jq_output" > "$RESULTS_FOLDER/${new_test_name}.commands"
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"
done
@ -341,6 +352,7 @@ main() {
# dependencies
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
(which lsof) || (apt-get update && apt-get install -y lsof)
# get the current IP address, required by benchmark_serving.py
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
@ -359,7 +371,6 @@ main() {
run_latency_tests $QUICK_BENCHMARK_ROOT/tests/latency-tests.json
run_throughput_tests $QUICK_BENCHMARK_ROOT/tests/throughput-tests.json
# postprocess benchmarking results
pip install tabulate pandas
python3 $QUICK_BENCHMARK_ROOT/scripts/convert-results-json-to-markdown.py