Add quantized mixtral support (#2673)

This commit is contained in:
Woosuk Kwon 2024-01-30 16:34:10 -08:00 committed by GitHub
parent 105a40f53a
commit 3dad944485
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 422 additions and 4 deletions

View File

@ -4,7 +4,6 @@ from typing import Optional, Type
import torch import torch
import torch.nn as nn import torch.nn as nn
from transformers import PretrainedConfig
from vllm.config import ModelConfig, LoRAConfig from vllm.config import ModelConfig, LoRAConfig
from vllm.model_executor.models import ModelRegistry from vllm.model_executor.models import ModelRegistry
@ -21,8 +20,14 @@ def _set_default_torch_dtype(dtype: torch.dtype):
torch.set_default_dtype(old_dtype) torch.set_default_dtype(old_dtype)
def _get_model_architecture(config: PretrainedConfig) -> Type[nn.Module]: def _get_model_architecture(model_config: ModelConfig) -> Type[nn.Module]:
architectures = getattr(config, "architectures", []) architectures = getattr(model_config.hf_config, "architectures", [])
# Special handling for quantized Mixtral.
# FIXME(woosuk): This is a temporary hack.
if (model_config.quantization is not None
and "MixtralForCausalLM" in architectures):
architectures = ["QuantMixtralForCausalLM"]
for arch in architectures: for arch in architectures:
model_cls = ModelRegistry.load_model_cls(arch) model_cls = ModelRegistry.load_model_cls(arch)
if model_cls is not None: if model_cls is not None:
@ -34,7 +39,7 @@ def _get_model_architecture(config: PretrainedConfig) -> Type[nn.Module]:
def get_model(model_config: ModelConfig, def get_model(model_config: ModelConfig,
lora_config: Optional[LoRAConfig] = None) -> nn.Module: lora_config: Optional[LoRAConfig] = None) -> nn.Module:
model_class = _get_model_architecture(model_config.hf_config) model_class = _get_model_architecture(model_config)
# Get the (maybe quantized) linear method. # Get the (maybe quantized) linear method.
linear_method = None linear_method = None

View File

@ -30,6 +30,7 @@ _MODELS = {
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"), "LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
"MistralForCausalLM": ("mistral", "MistralForCausalLM"), "MistralForCausalLM": ("mistral", "MistralForCausalLM"),
"MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"), "MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"),
"QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"),
# transformers's mpt class has lower case # transformers's mpt class has lower case
"MptForCausalLM": ("mpt", "MPTForCausalLM"), "MptForCausalLM": ("mpt", "MPTForCausalLM"),
"MPTForCausalLM": ("mpt", "MPTForCausalLM"), "MPTForCausalLM": ("mpt", "MPTForCausalLM"),

View File

@ -0,0 +1,412 @@
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Mixtral model."""
from typing import List, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from transformers import MixtralConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
ReplicatedLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.communication_op import (
tensor_model_parallel_all_reduce)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class MixtralMLP(nn.Module):
def __init__(
self,
num_experts: int,
hidden_size: int,
intermediate_size: int,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.num_experts = num_experts
self.ffn_dim = intermediate_size
self.hidden_dim = hidden_size
self.w1 = ReplicatedLinear(self.hidden_dim,
self.ffn_dim,
bias=False,
linear_method=linear_method)
self.w2 = ReplicatedLinear(self.ffn_dim,
self.hidden_dim,
bias=False,
linear_method=linear_method)
self.w3 = ReplicatedLinear(self.hidden_dim,
self.ffn_dim,
bias=False,
linear_method=linear_method)
# TODO: Use vllm's SiluAndMul
self.act_fn = nn.SiLU()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
w1_out, _ = self.w1(hidden_states)
w1_out = self.act_fn(w1_out)
w3_out, _ = self.w3(hidden_states)
current_hidden_states = w1_out * w3_out
current_hidden_states, _ = self.w2(current_hidden_states)
return current_hidden_states
class MixtralMoE(nn.Module):
def __init__(
self,
config: MixtralConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.rank = get_tensor_model_parallel_rank()
self.tp_size = get_tensor_model_parallel_world_size()
self.num_total_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
if self.tp_size > self.num_total_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {self.num_total_experts}.")
# Split experts equally between ranks
self.expert_indicies = np.array_split(range(
self.num_total_experts), self.tp_size)[self.rank].tolist()
if not self.expert_indicies:
raise ValueError(
f"Rank {self.rank} has no experts assigned to it.")
self.experts = nn.ModuleList([
MixtralMLP(self.num_total_experts,
config.hidden_size,
config.intermediate_size,
linear_method=linear_method)
if idx in self.expert_indicies else None
for idx in range(self.num_total_experts)
])
self.gate = ReplicatedLinear(config.hidden_size,
self.num_total_experts,
bias=False,
linear_method=None)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits, _ = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights,
self.top_k,
dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
final_hidden_states = None
for expert_idx in self.expert_indicies:
expert_layer = self.experts[expert_idx]
expert_mask = (selected_experts == expert_idx)
expert_weights = (routing_weights * expert_mask).sum(dim=-1,
keepdim=True)
current_hidden_states = expert_layer(hidden_states).mul_(
expert_weights)
if final_hidden_states is None:
final_hidden_states = current_hidden_states
else:
final_hidden_states.add_(current_hidden_states)
return tensor_model_parallel_all_reduce(final_hidden_states).view(
batch_size, sequence_length, hidden_dim)
class MixtralAttention(nn.Module):
def __init__(self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
linear_method: Optional[LinearMethodBase] = None,
sliding_window: Optional[int] = None) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.sliding_window = sliding_window
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
linear_method=linear_method,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
linear_method=linear_method,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
base=int(self.rope_theta),
is_neox_style=True,
)
self.attn = PagedAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
sliding_window=self.sliding_window,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.o_proj(attn_output)
return output
class MixtralDecoderLayer(nn.Module):
def __init__(
self,
config: MixtralConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Requires transformers > 4.32.0
rope_theta = getattr(config, "rope_theta", 10000)
self.self_attn = MixtralAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
max_position=config.max_position_embeddings,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
sliding_window=config.sliding_window,
linear_method=linear_method)
self.block_sparse_moe = MixtralMoE(config=config,
linear_method=linear_method)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
residual: Optional[torch.Tensor],
) -> torch.Tensor:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.block_sparse_moe(hidden_states)
return hidden_states, residual
class MixtralModel(nn.Module):
def __init__(
self,
config: MixtralConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
MixtralDecoderLayer(config, linear_method=linear_method)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(positions, hidden_states,
kv_caches[i], input_metadata,
residual)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class MixtralForCausalLM(nn.Module):
def __init__(
self,
config: MixtralConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
self.linear_method = linear_method
self.model = MixtralModel(config, linear_method)
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def sample(
self,
hidden_states: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path,
cache_dir,
load_format,
revision,
fall_back_to_pt=False):
if "rotary_emb.inv_freq" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Skip experts that are not assigned to this worker.
if ("block_sparse_moe.experts." in name
and name not in params_dict):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)