[Model] Add support for MPT (#334)
This commit is contained in:
parent
7717d0838b
commit
404422f42e
@ -46,6 +46,7 @@ vLLM seamlessly supports many Huggingface models, including the following archit
|
|||||||
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
|
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
|
||||||
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
|
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
|
||||||
- LLaMA (`lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
|
- LLaMA (`lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
|
||||||
|
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
|
||||||
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
|
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
|
||||||
|
|
||||||
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
|
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
|
||||||
|
|||||||
@ -395,6 +395,9 @@ void single_query_cached_kv_attention_launcher(
|
|||||||
case 96:
|
case 96:
|
||||||
LAUNCH_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
|
LAUNCH_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
|
||||||
break;
|
break;
|
||||||
|
case 112:
|
||||||
|
LAUNCH_ATTENTION_KERNEL(T, 112, BLOCK_SIZE, NUM_THREADS);
|
||||||
|
break;
|
||||||
case 128:
|
case 128:
|
||||||
LAUNCH_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
|
LAUNCH_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
|
||||||
break;
|
break;
|
||||||
|
|||||||
@ -29,6 +29,9 @@ Alongside each architecture, we include some popular models that use it.
|
|||||||
* - :code:`LlamaForCausalLM`
|
* - :code:`LlamaForCausalLM`
|
||||||
- LLaMA, Vicuna, Alpaca, Koala, Guanaco
|
- LLaMA, Vicuna, Alpaca, Koala, Guanaco
|
||||||
- :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`young-geng/koala`, :code:`JosephusCheung/Guanaco`, etc.
|
- :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`young-geng/koala`, :code:`JosephusCheung/Guanaco`, etc.
|
||||||
|
* - :code: `MPTForCausalLM`
|
||||||
|
- MPT, MPT-Instruct, MPT-Chat, MPT-StoryWriter
|
||||||
|
- :code:`mosaicml/mpt-7b`, :code:`mosaicml/mpt-7b-storywriter`, :code:`mosaicml/mpt-30b`, etc.
|
||||||
* - :code:`OPTForCausalLM`
|
* - :code:`OPTForCausalLM`
|
||||||
- OPT, OPT-IML
|
- OPT, OPT-IML
|
||||||
- :code:`facebook/opt-66b`, :code:`facebook/opt-iml-max-30b`, etc.
|
- :code:`facebook/opt-66b`, :code:`facebook/opt-iml-max-30b`, etc.
|
||||||
|
|||||||
@ -1,9 +1,10 @@
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from transformers import AutoConfig, PretrainedConfig
|
from transformers import PretrainedConfig
|
||||||
|
|
||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
|
from vllm.transformers_utils.config import get_config
|
||||||
from vllm.utils import get_cpu_memory
|
from vllm.utils import get_cpu_memory
|
||||||
|
|
||||||
logger = init_logger(__name__)
|
logger = init_logger(__name__)
|
||||||
@ -49,7 +50,7 @@ class ModelConfig:
|
|||||||
self.use_dummy_weights = use_dummy_weights
|
self.use_dummy_weights = use_dummy_weights
|
||||||
self.seed = seed
|
self.seed = seed
|
||||||
|
|
||||||
self.hf_config: PretrainedConfig = AutoConfig.from_pretrained(model)
|
self.hf_config = get_config(model)
|
||||||
self.dtype = _get_and_verify_dtype(self.hf_config, dtype)
|
self.dtype = _get_and_verify_dtype(self.hf_config, dtype)
|
||||||
self._verify_tokenizer_mode()
|
self._verify_tokenizer_mode()
|
||||||
|
|
||||||
|
|||||||
@ -12,7 +12,7 @@ from vllm import cache_ops
|
|||||||
from vllm import pos_encoding_ops
|
from vllm import pos_encoding_ops
|
||||||
from vllm.model_executor.input_metadata import InputMetadata
|
from vllm.model_executor.input_metadata import InputMetadata
|
||||||
|
|
||||||
_SUPPORTED_HEAD_SIZES = [64, 80, 96, 128]
|
_SUPPORTED_HEAD_SIZES = [64, 80, 96, 112, 128]
|
||||||
|
|
||||||
|
|
||||||
class PagedAttention(nn.Module):
|
class PagedAttention(nn.Module):
|
||||||
|
|||||||
@ -16,7 +16,8 @@ _MODEL_REGISTRY = {
|
|||||||
"GPTBigCodeForCausalLM": GPTBigCodeForCausalLM,
|
"GPTBigCodeForCausalLM": GPTBigCodeForCausalLM,
|
||||||
"GPTNeoXForCausalLM": GPTNeoXForCausalLM,
|
"GPTNeoXForCausalLM": GPTNeoXForCausalLM,
|
||||||
"LlamaForCausalLM": LlamaForCausalLM,
|
"LlamaForCausalLM": LlamaForCausalLM,
|
||||||
"LLaMAForCausalLM": LlamaForCausalLM,
|
"LLaMAForCausalLM": LlamaForCausalLM, # For decapoda-research/llama-*
|
||||||
|
"MPTForCausalLM": MPTForCausalLM,
|
||||||
"OPTForCausalLM": OPTForCausalLM,
|
"OPTForCausalLM": OPTForCausalLM,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -3,6 +3,7 @@ from vllm.model_executor.models.gpt2 import GPT2LMHeadModel
|
|||||||
from vllm.model_executor.models.gpt_bigcode import GPTBigCodeForCausalLM
|
from vllm.model_executor.models.gpt_bigcode import GPTBigCodeForCausalLM
|
||||||
from vllm.model_executor.models.gpt_neox import GPTNeoXForCausalLM
|
from vllm.model_executor.models.gpt_neox import GPTNeoXForCausalLM
|
||||||
from vllm.model_executor.models.llama import LlamaForCausalLM
|
from vllm.model_executor.models.llama import LlamaForCausalLM
|
||||||
|
from vllm.model_executor.models.mpt import MPTForCausalLM
|
||||||
from vllm.model_executor.models.opt import OPTForCausalLM
|
from vllm.model_executor.models.opt import OPTForCausalLM
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
@ -11,5 +12,6 @@ __all__ = [
|
|||||||
"GPTBigCodeForCausalLM",
|
"GPTBigCodeForCausalLM",
|
||||||
"GPTNeoXForCausalLM",
|
"GPTNeoXForCausalLM",
|
||||||
"LlamaForCausalLM",
|
"LlamaForCausalLM",
|
||||||
|
"MPTForCausalLM",
|
||||||
"OPTForCausalLM",
|
"OPTForCausalLM",
|
||||||
]
|
]
|
||||||
|
|||||||
279
vllm/model_executor/models/mpt.py
Normal file
279
vllm/model_executor/models/mpt.py
Normal file
@ -0,0 +1,279 @@
|
|||||||
|
# Adapted from https://huggingface.co/mosaicml/mpt-7b/tree/main
|
||||||
|
import math
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from vllm.model_executor.input_metadata import InputMetadata
|
||||||
|
from vllm.model_executor.layers.activation import get_act_fn
|
||||||
|
from vllm.model_executor.layers.attention import PagedAttentionWithALiBi
|
||||||
|
from vllm.model_executor.layers.sampler import Sampler
|
||||||
|
from vllm.model_executor.weight_utils import (hf_model_weights_iterator,
|
||||||
|
load_tensor_parallel_weights)
|
||||||
|
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||||
|
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
||||||
|
from vllm.model_executor.parallel_utils.tensor_parallel import (
|
||||||
|
VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
|
||||||
|
from vllm.sequence import SequenceOutputs
|
||||||
|
from vllm.transformers_utils.configs.mpt import MPTConfig
|
||||||
|
|
||||||
|
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||||
|
|
||||||
|
|
||||||
|
def _get_alibi_slopes(
|
||||||
|
total_num_heads: int,
|
||||||
|
alibi_bias_max: int,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
next_power_of_2 = 2**math.ceil(math.log2(total_num_heads))
|
||||||
|
m = torch.arange(1, next_power_of_2 + 1, dtype=torch.float32)
|
||||||
|
m = m.mul(alibi_bias_max / next_power_of_2)
|
||||||
|
slopes = 1.0 / torch.pow(2, m)
|
||||||
|
if next_power_of_2 != total_num_heads:
|
||||||
|
slopes = torch.concat([slopes[1::2], slopes[::2]])[:total_num_heads]
|
||||||
|
return slopes
|
||||||
|
|
||||||
|
|
||||||
|
class MPTAttention(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, config: MPTConfig):
|
||||||
|
super().__init__()
|
||||||
|
self.d_model = config.d_model
|
||||||
|
self.total_num_heads = config.n_heads
|
||||||
|
self.clip_qkv = config.attn_config["clip_qkv"]
|
||||||
|
self.qk_ln = config.attn_config["qk_ln"]
|
||||||
|
self.alibi_bias_max = config.attn_config["alibi_bias_max"]
|
||||||
|
assert not config.attn_config["prefix_lm"]
|
||||||
|
assert config.attn_config["alibi"]
|
||||||
|
|
||||||
|
self.qkv_proj = ColumnParallelLinear(
|
||||||
|
self.d_model,
|
||||||
|
3 * self.d_model,
|
||||||
|
bias=not config.no_bias,
|
||||||
|
gather_output=False,
|
||||||
|
perform_initialization=False,
|
||||||
|
)
|
||||||
|
if self.qk_ln:
|
||||||
|
self.q_ln = nn.LayerNorm(self.d_model)
|
||||||
|
self.k_ln = nn.LayerNorm(self.d_model)
|
||||||
|
self.out_proj = RowParallelLinear(
|
||||||
|
self.d_model,
|
||||||
|
self.d_model,
|
||||||
|
bias=not config.no_bias,
|
||||||
|
input_is_parallel=True,
|
||||||
|
perform_initialization=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
tp_world_size = get_tensor_model_parallel_world_size()
|
||||||
|
assert self.total_num_heads % tp_world_size == 0
|
||||||
|
self.num_heads = self.total_num_heads // tp_world_size
|
||||||
|
|
||||||
|
# Create the alibi slopes and slice them.
|
||||||
|
tp_rank = get_tensor_model_parallel_rank()
|
||||||
|
head_start = tp_rank * self.num_heads
|
||||||
|
head_end = (tp_rank + 1) * self.num_heads
|
||||||
|
alibi_slopes = _get_alibi_slopes(self.total_num_heads,
|
||||||
|
self.alibi_bias_max)
|
||||||
|
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
|
||||||
|
|
||||||
|
self.head_dim = self.d_model // self.total_num_heads
|
||||||
|
scaling = self.head_dim**-0.5
|
||||||
|
self.attn = PagedAttentionWithALiBi(self.num_heads, self.head_dim,
|
||||||
|
scaling, alibi_slopes)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
position_ids: torch.Tensor,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
kv_cache: KVCache,
|
||||||
|
input_metadata: InputMetadata,
|
||||||
|
cache_event: Optional[torch.cuda.Event],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
del position_ids # unused.
|
||||||
|
qkv, _ = self.qkv_proj(hidden_states)
|
||||||
|
if self.clip_qkv is not None:
|
||||||
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
||||||
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||||
|
if self.qk_ln:
|
||||||
|
q = self.q_ln(q)
|
||||||
|
k = self.k_ln(k)
|
||||||
|
k_cache, v_cache = kv_cache
|
||||||
|
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
|
||||||
|
cache_event)
|
||||||
|
output, _ = self.out_proj(attn_output)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class MPTMLP(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, config: MPTConfig):
|
||||||
|
super().__init__()
|
||||||
|
hidden_size = config.d_model
|
||||||
|
expansion_ratio = config.expansion_ratio
|
||||||
|
intermediate_size = expansion_ratio * hidden_size
|
||||||
|
self.up_proj = ColumnParallelLinear(hidden_size,
|
||||||
|
intermediate_size,
|
||||||
|
bias=not config.no_bias,
|
||||||
|
gather_output=False,
|
||||||
|
perform_initialization=False)
|
||||||
|
self.act = get_act_fn("gelu")
|
||||||
|
self.down_proj = RowParallelLinear(intermediate_size,
|
||||||
|
hidden_size,
|
||||||
|
bias=not config.no_bias,
|
||||||
|
input_is_parallel=True,
|
||||||
|
perform_initialization=False)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
x, _ = self.up_proj(x)
|
||||||
|
x = self.act(x)
|
||||||
|
x, _ = self.down_proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class MPTBlock(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, config: MPTConfig):
|
||||||
|
super().__init__()
|
||||||
|
hidden_size = config.d_model
|
||||||
|
self.norm_1 = nn.LayerNorm(hidden_size)
|
||||||
|
self.attn = MPTAttention(config)
|
||||||
|
self.norm_2 = nn.LayerNorm(hidden_size)
|
||||||
|
self.ffn = MPTMLP(config)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
position_ids: torch.Tensor,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
kv_cache: KVCache,
|
||||||
|
input_metadata: InputMetadata,
|
||||||
|
cache_event: Optional[torch.cuda.Event],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
x = self.norm_1(hidden_states)
|
||||||
|
x = self.attn(
|
||||||
|
position_ids=position_ids,
|
||||||
|
hidden_states=x,
|
||||||
|
kv_cache=kv_cache,
|
||||||
|
input_metadata=input_metadata,
|
||||||
|
cache_event=cache_event,
|
||||||
|
)
|
||||||
|
hidden_states = hidden_states + x
|
||||||
|
x = self.norm_2(hidden_states)
|
||||||
|
x = self.ffn(x)
|
||||||
|
hidden_states = hidden_states + x
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class MPTModel(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, config: MPTConfig):
|
||||||
|
super().__init__()
|
||||||
|
assert config.embedding_fraction == 1.0
|
||||||
|
assert config.norm_type == "low_precision_layernorm"
|
||||||
|
|
||||||
|
self.wte = VocabParallelEmbedding(config.vocab_size,
|
||||||
|
config.d_model,
|
||||||
|
perform_initialization=False)
|
||||||
|
self.blocks = nn.ModuleList(
|
||||||
|
[MPTBlock(config) for _ in range(config.n_layers)])
|
||||||
|
self.norm_f = nn.LayerNorm(config.d_model)
|
||||||
|
if config.no_bias:
|
||||||
|
for module in self.modules():
|
||||||
|
if hasattr(module, "bias"):
|
||||||
|
if isinstance(module.bias, nn.Parameter):
|
||||||
|
# Remove the bias term in Linear and LayerNorm.
|
||||||
|
module.register_parameter("bias", None)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.Tensor,
|
||||||
|
position_ids: torch.Tensor,
|
||||||
|
kv_caches: List[KVCache],
|
||||||
|
input_metadata: InputMetadata,
|
||||||
|
cache_events: Optional[List[torch.cuda.Event]],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
hidden_states = self.wte(input_ids)
|
||||||
|
for i in range(len(self.blocks)):
|
||||||
|
if cache_events is None:
|
||||||
|
cache_event = None
|
||||||
|
else:
|
||||||
|
cache_event = cache_events[i]
|
||||||
|
block = self.blocks[i]
|
||||||
|
hidden_states = block(
|
||||||
|
position_ids,
|
||||||
|
hidden_states,
|
||||||
|
kv_caches[i],
|
||||||
|
input_metadata,
|
||||||
|
cache_event,
|
||||||
|
)
|
||||||
|
hidden_states = self.norm_f(hidden_states)
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class MPTForCausalLM(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, config: MPTConfig):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
assert config.tie_word_embeddings
|
||||||
|
|
||||||
|
self.transformer = MPTModel(config)
|
||||||
|
# TODO(zhuohan): create a new weight after implementing pipeline
|
||||||
|
# parallelism
|
||||||
|
self.lm_head_weight = self.transformer.wte.weight
|
||||||
|
self.sampler = Sampler(config.vocab_size)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.Tensor,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
kv_caches: List[KVCache],
|
||||||
|
input_metadata: InputMetadata,
|
||||||
|
cache_events: Optional[List[torch.cuda.Event]],
|
||||||
|
) -> Dict[int, SequenceOutputs]:
|
||||||
|
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
||||||
|
input_metadata, cache_events)
|
||||||
|
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
|
||||||
|
input_metadata)
|
||||||
|
return next_tokens
|
||||||
|
|
||||||
|
_column_parallel_weights = ["wte.weight", "up_proj.weight", "up_proj.bias"]
|
||||||
|
_row_parallel_weights = ["out_proj.weight", "down_proj.weight"]
|
||||||
|
|
||||||
|
def load_weights(self,
|
||||||
|
model_name_or_path: str,
|
||||||
|
cache_dir: Optional[str] = None,
|
||||||
|
use_np_cache: bool = False):
|
||||||
|
tp_world_size = get_tensor_model_parallel_world_size()
|
||||||
|
tp_rank = get_tensor_model_parallel_rank()
|
||||||
|
state_dict = self.state_dict()
|
||||||
|
for name, loaded_weight in hf_model_weights_iterator(
|
||||||
|
model_name_or_path, cache_dir, use_np_cache):
|
||||||
|
if "Wqkv" in name:
|
||||||
|
# NOTE(woosuk): MPT's fused QKV has the shape of
|
||||||
|
# [3 * num_heads * head_size, hidden_size].
|
||||||
|
# When tensor model parallelism is used, we need to shard
|
||||||
|
# the weight along the hidden dimension.
|
||||||
|
total_num_heads = self.config.num_attention_heads
|
||||||
|
hidden_size = self.config.hidden_size
|
||||||
|
head_size = hidden_size // total_num_heads
|
||||||
|
num_heads = total_num_heads // tp_world_size
|
||||||
|
head_start = tp_rank * num_heads
|
||||||
|
head_end = (tp_rank + 1) * num_heads
|
||||||
|
|
||||||
|
if name.endswith(".weight"):
|
||||||
|
loaded_weight = loaded_weight.view(3, total_num_heads,
|
||||||
|
head_size, hidden_size)
|
||||||
|
loaded_weight = loaded_weight[:, head_start:head_end, :, :]
|
||||||
|
loaded_weight = loaded_weight.reshape(-1, hidden_size)
|
||||||
|
elif name.endswith(".bias"):
|
||||||
|
loaded_weight = loaded_weight.view(3, total_num_heads,
|
||||||
|
head_size)
|
||||||
|
loaded_weight = loaded_weight[:, head_start:head_end, :]
|
||||||
|
loaded_weight = loaded_weight.reshape(-1)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unexpected parameter name {name}")
|
||||||
|
name = name.replace("Wqkv", "qkv_proj")
|
||||||
|
param = state_dict[name]
|
||||||
|
load_tensor_parallel_weights(param, loaded_weight, name,
|
||||||
|
self._column_parallel_weights,
|
||||||
|
self._row_parallel_weights, tp_rank)
|
||||||
15
vllm/transformers_utils/config.py
Normal file
15
vllm/transformers_utils/config.py
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
from transformers import AutoConfig, PretrainedConfig
|
||||||
|
|
||||||
|
from vllm.transformers_utils.configs import * # pylint: disable=wildcard-import
|
||||||
|
|
||||||
|
_CONFIG_REGISTRY = {
|
||||||
|
"mpt": MPTConfig,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def get_config(model: str) -> PretrainedConfig:
|
||||||
|
config = AutoConfig.from_pretrained(model, trust_remote_code=True)
|
||||||
|
if config.model_type in _CONFIG_REGISTRY:
|
||||||
|
config_class = _CONFIG_REGISTRY[config.model_type]
|
||||||
|
config = config_class.from_pretrained(model)
|
||||||
|
return config
|
||||||
5
vllm/transformers_utils/configs/__init__.py
Normal file
5
vllm/transformers_utils/configs/__init__.py
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
from vllm.transformers_utils.configs.mpt import MPTConfig
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"MPTConfig",
|
||||||
|
]
|
||||||
74
vllm/transformers_utils/configs/mpt.py
Normal file
74
vllm/transformers_utils/configs/mpt.py
Normal file
@ -0,0 +1,74 @@
|
|||||||
|
# Adapted from
|
||||||
|
# https://huggingface.co/mosaicml/mpt-7b/blob/main/configuration_mpt.py
|
||||||
|
from typing import Any, Dict, Optional, Union
|
||||||
|
|
||||||
|
from transformers import PretrainedConfig
|
||||||
|
|
||||||
|
_ATTN_CONFIG_DEFAULTS = {
|
||||||
|
"attn_type": "multihead_attention",
|
||||||
|
"attn_pdrop": 0.0,
|
||||||
|
"attn_impl": "triton",
|
||||||
|
"qk_ln": False,
|
||||||
|
"clip_qkv": None,
|
||||||
|
"softmax_scale": None,
|
||||||
|
"prefix_lm": False,
|
||||||
|
"attn_uses_sequence_id": False,
|
||||||
|
"alibi": False,
|
||||||
|
"alibi_bias_max": 8,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class MPTConfig(PretrainedConfig):
|
||||||
|
model_type = "mpt"
|
||||||
|
attribute_map = {
|
||||||
|
"hidden_size": "d_model",
|
||||||
|
"num_attention_heads": "n_heads",
|
||||||
|
"num_hidden_layers": "n_layers",
|
||||||
|
}
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model: int = 2048,
|
||||||
|
n_heads: int = 16,
|
||||||
|
n_layers: int = 24,
|
||||||
|
expansion_ratio: int = 4,
|
||||||
|
max_seq_len: int = 2048,
|
||||||
|
vocab_size: int = 50368,
|
||||||
|
resid_pdrop: float = 0.0,
|
||||||
|
emb_pdrop: float = 0.0,
|
||||||
|
learned_pos_emb: bool = True,
|
||||||
|
attn_config: Optional[Dict[str, Any]] = None,
|
||||||
|
init_device: str = "cpu",
|
||||||
|
logit_scale: Optional[Union[float, str]] = None,
|
||||||
|
no_bias: bool = False,
|
||||||
|
verbose: int = 0,
|
||||||
|
embedding_fraction: float = 1.0,
|
||||||
|
norm_type: str = "low_precision_layernorm",
|
||||||
|
use_cache: bool = False,
|
||||||
|
**kwargs,
|
||||||
|
) -> None:
|
||||||
|
self.d_model = d_model
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.expansion_ratio = expansion_ratio
|
||||||
|
self.max_seq_len = max_seq_len
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.resid_pdrop = resid_pdrop
|
||||||
|
self.emb_pdrop = emb_pdrop
|
||||||
|
self.learned_pos_emb = learned_pos_emb
|
||||||
|
if attn_config is None:
|
||||||
|
self.attn_config = _ATTN_CONFIG_DEFAULTS
|
||||||
|
else:
|
||||||
|
self.attn_config = attn_config
|
||||||
|
self.init_device = init_device
|
||||||
|
self.logit_scale = logit_scale
|
||||||
|
self.no_bias = no_bias
|
||||||
|
self.verbose = verbose
|
||||||
|
self.embedding_fraction = embedding_fraction
|
||||||
|
self.norm_type = norm_type
|
||||||
|
self.use_cache = use_cache
|
||||||
|
if "name" in kwargs:
|
||||||
|
del kwargs["name"]
|
||||||
|
if "loss_fn" in kwargs:
|
||||||
|
del kwargs["loss_fn"]
|
||||||
|
super().__init__(**kwargs)
|
||||||
Loading…
Reference in New Issue
Block a user