Migrate AquilaForCausalLM to LlamaForCausalLM (#2867)
This commit is contained in:
parent
87069ccf68
commit
4efbac6d35
@ -10,8 +10,8 @@ logger = init_logger(__name__)
|
|||||||
|
|
||||||
# Architecture -> (module, class).
|
# Architecture -> (module, class).
|
||||||
_MODELS = {
|
_MODELS = {
|
||||||
"AquilaModel": ("aquila", "AquilaForCausalLM"),
|
"AquilaModel": ("llama", "LlamaForCausalLM"),
|
||||||
"AquilaForCausalLM": ("aquila", "AquilaForCausalLM"), # AquilaChat2
|
"AquilaForCausalLM": ("llama", "LlamaForCausalLM"), # AquilaChat2
|
||||||
"BaiChuanForCausalLM": ("baichuan", "BaiChuanForCausalLM"), # baichuan-7b
|
"BaiChuanForCausalLM": ("baichuan", "BaiChuanForCausalLM"), # baichuan-7b
|
||||||
"BaichuanForCausalLM": ("baichuan", "BaichuanForCausalLM"), # baichuan-13b
|
"BaichuanForCausalLM": ("baichuan", "BaichuanForCausalLM"), # baichuan-13b
|
||||||
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
|
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
|
||||||
@ -41,7 +41,6 @@ _MODELS = {
|
|||||||
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
|
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
|
||||||
"RWForCausalLM": ("falcon", "FalconForCausalLM"),
|
"RWForCausalLM": ("falcon", "FalconForCausalLM"),
|
||||||
"StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"),
|
"StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"),
|
||||||
"YiForCausalLM": ("yi", "YiForCausalLM")
|
|
||||||
}
|
}
|
||||||
|
|
||||||
# Models not supported by ROCm.
|
# Models not supported by ROCm.
|
||||||
|
|||||||
@ -1,342 +0,0 @@
|
|||||||
# coding=utf-8
|
|
||||||
# Adapted from
|
|
||||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
|
||||||
# Copyright 2023 The vLLM team.
|
|
||||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
||||||
#
|
|
||||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
||||||
# and OPT implementations in this library. It has been modified from its
|
|
||||||
# original forms to accommodate minor architectural differences compared
|
|
||||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""Inference-only LLaMA model compatible with HuggingFace weights."""
|
|
||||||
from typing import Any, Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import nn
|
|
||||||
|
|
||||||
from vllm.model_executor.input_metadata import InputMetadata
|
|
||||||
from vllm.model_executor.layers.activation import SiluAndMul
|
|
||||||
from vllm.model_executor.layers.attention import PagedAttention
|
|
||||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
|
||||||
MergedColumnParallelLinear,
|
|
||||||
QKVParallelLinear,
|
|
||||||
RowParallelLinear)
|
|
||||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
||||||
from vllm.model_executor.layers.sampler import Sampler
|
|
||||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
||||||
VocabParallelEmbedding, ParallelLMHead)
|
|
||||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
|
||||||
get_tensor_model_parallel_world_size)
|
|
||||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
||||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
|
||||||
hf_model_weights_iterator)
|
|
||||||
from vllm.sequence import SamplerOutput
|
|
||||||
from vllm.transformers_utils.configs.aquila import AquilaConfig
|
|
||||||
|
|
||||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
|
||||||
|
|
||||||
|
|
||||||
class AquilaMLP(nn.Module):
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
hidden_size: int,
|
|
||||||
intermediate_size: int,
|
|
||||||
hidden_act: str,
|
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.gate_up_proj = MergedColumnParallelLinear(
|
|
||||||
hidden_size, [intermediate_size] * 2,
|
|
||||||
bias=False,
|
|
||||||
linear_method=linear_method)
|
|
||||||
self.down_proj = RowParallelLinear(intermediate_size,
|
|
||||||
hidden_size,
|
|
||||||
bias=False,
|
|
||||||
linear_method=linear_method)
|
|
||||||
if hidden_act != "silu":
|
|
||||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
|
||||||
"Only silu is supported for now.")
|
|
||||||
self.act_fn = SiluAndMul()
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
gate_up, _ = self.gate_up_proj(x)
|
|
||||||
x = self.act_fn(gate_up)
|
|
||||||
x, _ = self.down_proj(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class AquilaRMSNorm(nn.Module):
|
|
||||||
|
|
||||||
def __init__(self, hidden_size, eps=1e-6):
|
|
||||||
"""
|
|
||||||
AquilaRMSNorm is equivalent to T5LayerNorm
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
||||||
self.variance_epsilon = eps
|
|
||||||
|
|
||||||
def forward(self, hidden_states):
|
|
||||||
input_dtype = hidden_states.dtype
|
|
||||||
variance = hidden_states.to(torch.float32).pow(2).mean(-1,
|
|
||||||
keepdim=True)
|
|
||||||
hidden_states = hidden_states * torch.rsqrt(variance +
|
|
||||||
self.variance_epsilon)
|
|
||||||
|
|
||||||
return (self.weight * hidden_states).to(input_dtype)
|
|
||||||
|
|
||||||
|
|
||||||
class AquilaAttention(nn.Module):
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
hidden_size: int,
|
|
||||||
num_heads: int,
|
|
||||||
num_kv_heads: int,
|
|
||||||
rope_theta: float = 10000,
|
|
||||||
max_position_embeddings: int = 8192,
|
|
||||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.hidden_size = hidden_size
|
|
||||||
tp_size = get_tensor_model_parallel_world_size()
|
|
||||||
self.total_num_heads = num_heads
|
|
||||||
assert self.total_num_heads % tp_size == 0
|
|
||||||
self.num_heads = self.total_num_heads // tp_size
|
|
||||||
self.total_num_kv_heads = num_kv_heads
|
|
||||||
assert self.total_num_kv_heads % tp_size == 0
|
|
||||||
self.num_kv_heads = self.total_num_kv_heads // tp_size
|
|
||||||
self.head_dim = hidden_size // self.total_num_heads
|
|
||||||
self.q_size = self.num_heads * self.head_dim
|
|
||||||
self.kv_size = self.num_kv_heads * self.head_dim
|
|
||||||
self.scaling = self.head_dim**-0.5
|
|
||||||
self.rope_theta = rope_theta
|
|
||||||
self.max_position_embeddings = max_position_embeddings
|
|
||||||
|
|
||||||
self.qkv_proj = QKVParallelLinear(
|
|
||||||
hidden_size,
|
|
||||||
self.head_dim,
|
|
||||||
self.total_num_heads,
|
|
||||||
self.total_num_kv_heads,
|
|
||||||
bias=False,
|
|
||||||
linear_method=linear_method,
|
|
||||||
)
|
|
||||||
self.o_proj = RowParallelLinear(
|
|
||||||
self.total_num_heads * self.head_dim,
|
|
||||||
hidden_size,
|
|
||||||
bias=False,
|
|
||||||
linear_method=linear_method,
|
|
||||||
)
|
|
||||||
self.rotary_emb = get_rope(
|
|
||||||
self.head_dim,
|
|
||||||
rotary_dim=self.head_dim,
|
|
||||||
max_position=self.max_position_embeddings,
|
|
||||||
base=self.rope_theta,
|
|
||||||
rope_scaling=rope_scaling,
|
|
||||||
)
|
|
||||||
self.attn = PagedAttention(self.num_heads,
|
|
||||||
self.head_dim,
|
|
||||||
self.scaling,
|
|
||||||
num_kv_heads=self.num_kv_heads)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
positions: torch.Tensor,
|
|
||||||
hidden_states: torch.Tensor,
|
|
||||||
kv_cache: KVCache,
|
|
||||||
input_metadata: InputMetadata,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
qkv, _ = self.qkv_proj(hidden_states)
|
|
||||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
||||||
q, k = self.rotary_emb(positions, q, k)
|
|
||||||
k_cache, v_cache = kv_cache
|
|
||||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
|
||||||
output, _ = self.o_proj(attn_output)
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
class AquilaDecoderLayer(nn.Module):
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config: AquilaConfig,
|
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.hidden_size = config.hidden_size
|
|
||||||
rope_theta = getattr(config, "rope_theta", 10000)
|
|
||||||
rope_scaling = getattr(config, "rope_scaling", None)
|
|
||||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
|
||||||
8192)
|
|
||||||
self.self_attn = AquilaAttention(
|
|
||||||
hidden_size=self.hidden_size,
|
|
||||||
num_heads=config.num_attention_heads,
|
|
||||||
num_kv_heads=config.num_key_value_heads,
|
|
||||||
rope_theta=rope_theta,
|
|
||||||
max_position_embeddings=max_position_embeddings,
|
|
||||||
rope_scaling=rope_scaling,
|
|
||||||
linear_method=linear_method,
|
|
||||||
)
|
|
||||||
self.mlp = AquilaMLP(
|
|
||||||
hidden_size=self.hidden_size,
|
|
||||||
intermediate_size=config.intermediate_size,
|
|
||||||
hidden_act=config.hidden_act,
|
|
||||||
linear_method=linear_method,
|
|
||||||
)
|
|
||||||
self.input_layernorm = AquilaRMSNorm(config.hidden_size,
|
|
||||||
eps=config.rms_norm_eps)
|
|
||||||
self.post_attention_layernorm = AquilaRMSNorm(config.hidden_size,
|
|
||||||
eps=config.rms_norm_eps)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
positions: torch.Tensor,
|
|
||||||
hidden_states: torch.Tensor,
|
|
||||||
kv_cache: KVCache,
|
|
||||||
input_metadata: InputMetadata,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
# Self Attention
|
|
||||||
residual = hidden_states
|
|
||||||
hidden_states = self.input_layernorm(hidden_states)
|
|
||||||
hidden_states = self.self_attn(
|
|
||||||
positions=positions,
|
|
||||||
hidden_states=hidden_states,
|
|
||||||
kv_cache=kv_cache,
|
|
||||||
input_metadata=input_metadata,
|
|
||||||
)
|
|
||||||
hidden_states = residual + hidden_states
|
|
||||||
|
|
||||||
# Fully Connected
|
|
||||||
residual = hidden_states
|
|
||||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
||||||
hidden_states = self.mlp(hidden_states)
|
|
||||||
hidden_states = residual + hidden_states
|
|
||||||
return hidden_states
|
|
||||||
|
|
||||||
|
|
||||||
class AquilaModel(nn.Module):
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config: AquilaConfig,
|
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.config = config
|
|
||||||
self.padding_idx = config.pad_token_id
|
|
||||||
self.vocab_size = config.vocab_size
|
|
||||||
self.embed_tokens = VocabParallelEmbedding(
|
|
||||||
config.vocab_size,
|
|
||||||
config.hidden_size,
|
|
||||||
)
|
|
||||||
self.layers = nn.ModuleList([
|
|
||||||
AquilaDecoderLayer(config, linear_method)
|
|
||||||
for _ in range(config.num_hidden_layers)
|
|
||||||
])
|
|
||||||
self.norm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
input_ids: torch.Tensor,
|
|
||||||
positions: torch.Tensor,
|
|
||||||
kv_caches: List[KVCache],
|
|
||||||
input_metadata: InputMetadata,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
hidden_states = self.embed_tokens(input_ids)
|
|
||||||
for i in range(len(self.layers)):
|
|
||||||
layer = self.layers[i]
|
|
||||||
hidden_states = layer(
|
|
||||||
positions,
|
|
||||||
hidden_states,
|
|
||||||
kv_caches[i],
|
|
||||||
input_metadata,
|
|
||||||
)
|
|
||||||
hidden_states = self.norm(hidden_states)
|
|
||||||
|
|
||||||
return hidden_states
|
|
||||||
|
|
||||||
|
|
||||||
class AquilaForCausalLM(nn.Module):
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config,
|
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.config = config
|
|
||||||
self.linear_method = linear_method
|
|
||||||
self.model = AquilaModel(config, linear_method)
|
|
||||||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
|
||||||
self.sampler = Sampler(config.vocab_size)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
input_ids: torch.Tensor,
|
|
||||||
positions: torch.Tensor,
|
|
||||||
kv_caches: List[KVCache],
|
|
||||||
input_metadata: InputMetadata,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
|
||||||
input_metadata)
|
|
||||||
return hidden_states
|
|
||||||
|
|
||||||
def sample(
|
|
||||||
self,
|
|
||||||
hidden_states: torch.Tensor,
|
|
||||||
sampling_metadata: SamplingMetadata,
|
|
||||||
) -> Optional[SamplerOutput]:
|
|
||||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
|
||||||
sampling_metadata)
|
|
||||||
return next_tokens
|
|
||||||
|
|
||||||
def load_weights(self,
|
|
||||||
model_name_or_path: str,
|
|
||||||
cache_dir: Optional[str] = None,
|
|
||||||
load_format: str = "auto",
|
|
||||||
revision: Optional[str] = None):
|
|
||||||
stacked_params_mapping = [
|
|
||||||
# (param_name, shard_name, shard_id)
|
|
||||||
("qkv_proj", "q_proj", "q"),
|
|
||||||
("qkv_proj", "k_proj", "k"),
|
|
||||||
("qkv_proj", "v_proj", "v"),
|
|
||||||
("gate_up_proj", "gate_proj", 0),
|
|
||||||
("gate_up_proj", "up_proj", 1),
|
|
||||||
]
|
|
||||||
params_dict = dict(self.named_parameters())
|
|
||||||
for name, loaded_weight in hf_model_weights_iterator(
|
|
||||||
model_name_or_path, cache_dir, load_format, revision):
|
|
||||||
if "rotary_emb.inv_freq" in name:
|
|
||||||
continue
|
|
||||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
||||||
if weight_name not in name:
|
|
||||||
continue
|
|
||||||
name = name.replace(weight_name, param_name)
|
|
||||||
# Skip loading extra bias for GPTQ models.
|
|
||||||
if name.endswith(".bias") and name not in params_dict:
|
|
||||||
continue
|
|
||||||
param = params_dict[name]
|
|
||||||
weight_loader = param.weight_loader
|
|
||||||
weight_loader(param, loaded_weight, shard_id)
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
# Skip loading extra bias for GPTQ models.
|
|
||||||
if name.endswith(".bias") and name not in params_dict:
|
|
||||||
continue
|
|
||||||
param = params_dict[name]
|
|
||||||
weight_loader = getattr(param, "weight_loader",
|
|
||||||
default_weight_loader)
|
|
||||||
weight_loader(param, loaded_weight)
|
|
||||||
@ -5,7 +5,6 @@ from transformers import AutoConfig, PretrainedConfig
|
|||||||
from vllm.transformers_utils.configs import *
|
from vllm.transformers_utils.configs import *
|
||||||
|
|
||||||
_CONFIG_REGISTRY = {
|
_CONFIG_REGISTRY = {
|
||||||
"aquila": AquilaConfig,
|
|
||||||
"baichuan": BaiChuanConfig,
|
"baichuan": BaiChuanConfig,
|
||||||
"chatglm": ChatGLMConfig,
|
"chatglm": ChatGLMConfig,
|
||||||
"mpt": MPTConfig,
|
"mpt": MPTConfig,
|
||||||
|
|||||||
@ -1,4 +1,3 @@
|
|||||||
from vllm.transformers_utils.configs.aquila import AquilaConfig
|
|
||||||
from vllm.transformers_utils.configs.baichuan import BaiChuanConfig
|
from vllm.transformers_utils.configs.baichuan import BaiChuanConfig
|
||||||
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
|
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
|
||||||
from vllm.transformers_utils.configs.mpt import MPTConfig
|
from vllm.transformers_utils.configs.mpt import MPTConfig
|
||||||
@ -9,7 +8,6 @@ from vllm.transformers_utils.configs.qwen import QWenConfig
|
|||||||
from vllm.transformers_utils.configs.falcon import RWConfig
|
from vllm.transformers_utils.configs.falcon import RWConfig
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"AquilaConfig",
|
|
||||||
"BaiChuanConfig",
|
"BaiChuanConfig",
|
||||||
"ChatGLMConfig",
|
"ChatGLMConfig",
|
||||||
"MPTConfig",
|
"MPTConfig",
|
||||||
|
|||||||
@ -1,69 +0,0 @@
|
|||||||
# coding=utf-8
|
|
||||||
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
||||||
#
|
|
||||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
||||||
# and OPT implementations in this library. It has been modified from its
|
|
||||||
# original forms to accommodate minor architectural differences compared
|
|
||||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
""" Aquila model configuration"""
|
|
||||||
|
|
||||||
from transformers import PretrainedConfig
|
|
||||||
|
|
||||||
|
|
||||||
class AquilaConfig(PretrainedConfig):
|
|
||||||
model_type = "aquila"
|
|
||||||
keys_to_ignore_at_inference = ["past_key_values"]
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
vocab_size=100008,
|
|
||||||
hidden_size=4096,
|
|
||||||
intermediate_size=11008,
|
|
||||||
num_hidden_layers=32,
|
|
||||||
num_attention_heads=32,
|
|
||||||
num_key_value_heads=None,
|
|
||||||
hidden_act="silu",
|
|
||||||
max_position_embeddings=2048,
|
|
||||||
initializer_range=0.006,
|
|
||||||
rms_norm_eps=1e-5,
|
|
||||||
use_cache=True,
|
|
||||||
pad_token_id=0,
|
|
||||||
bos_token_id=1,
|
|
||||||
eos_token_id=2,
|
|
||||||
tie_word_embeddings=False,
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
self.vocab_size = vocab_size
|
|
||||||
self.max_position_embeddings = max_position_embeddings
|
|
||||||
self.hidden_size = hidden_size
|
|
||||||
self.intermediate_size = intermediate_size
|
|
||||||
self.num_hidden_layers = num_hidden_layers
|
|
||||||
# for backward compatibility
|
|
||||||
if num_key_value_heads is None:
|
|
||||||
num_key_value_heads = num_attention_heads
|
|
||||||
|
|
||||||
self.num_key_value_heads = num_key_value_heads
|
|
||||||
self.num_attention_heads = num_attention_heads
|
|
||||||
self.hidden_act = hidden_act
|
|
||||||
self.initializer_range = initializer_range
|
|
||||||
self.rms_norm_eps = rms_norm_eps
|
|
||||||
self.use_cache = use_cache
|
|
||||||
super().__init__(
|
|
||||||
pad_token_id=pad_token_id,
|
|
||||||
bos_token_id=bos_token_id,
|
|
||||||
eos_token_id=eos_token_id,
|
|
||||||
tie_word_embeddings=tie_word_embeddings,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
Loading…
Reference in New Issue
Block a user