[Core] Fix circular reference which leaked llm instance in local dev env (#4737)
Storing exception frame is extremely prone to circular refernece because it contains the reference to objects. When tensorizer is not installed, it leaks llm instance because error frame has references to various modules which cause circular reference problem. I also found spec decoding has a circular reference issue, and I solved it using weakref.proxy.
This commit is contained in:
parent
dac6a3f6ed
commit
6a0f617210
@ -3,9 +3,12 @@
|
||||
Run `pytest tests/basic_correctness/test_basic_correctness.py`.
|
||||
"""
|
||||
import os
|
||||
import weakref
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm import LLM
|
||||
|
||||
MODELS = [
|
||||
"facebook/opt-125m",
|
||||
"meta-llama/Llama-2-7b-hf",
|
||||
@ -13,6 +16,16 @@ MODELS = [
|
||||
VLLM_ATTENTION_BACKEND = "VLLM_ATTENTION_BACKEND"
|
||||
|
||||
|
||||
def test_vllm_gc_ed():
|
||||
"""Verify vllm instance is GC'ed when it is deleted"""
|
||||
llm = LLM("facebook/opt-125m")
|
||||
weak_llm = weakref.ref(llm)
|
||||
del llm
|
||||
# If there's any circular reference to vllm, this fails
|
||||
# because llm instance is not GC'ed.
|
||||
assert weak_llm() is None
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model", MODELS)
|
||||
@pytest.mark.parametrize("dtype", ["half"])
|
||||
@pytest.mark.parametrize("max_tokens", [5])
|
||||
|
||||
@ -19,7 +19,7 @@ from vllm.model_executor.layers.quantization.base_config import (
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
|
||||
tensorizer_load_fail = None
|
||||
tensorizer_error_msg = None
|
||||
|
||||
try:
|
||||
from tensorizer import (DecryptionParams, EncryptionParams,
|
||||
@ -28,7 +28,7 @@ try:
|
||||
from tensorizer.utils import (convert_bytes, get_mem_usage,
|
||||
no_init_or_tensor)
|
||||
except ImportError as e:
|
||||
tensorizer_load_fail = e
|
||||
tensorizer_error_msg = str(e)
|
||||
|
||||
__all__ = [
|
||||
'EncryptionParams', 'DecryptionParams', 'TensorDeserializer',
|
||||
@ -254,11 +254,11 @@ class TensorizerAgent:
|
||||
|
||||
def __init__(self, tensorizer_config: TensorizerConfig,
|
||||
quant_config: QuantizationConfig, **extra_kwargs):
|
||||
if tensorizer_load_fail is not None:
|
||||
if tensorizer_error_msg is not None:
|
||||
raise ImportError(
|
||||
"Tensorizer is not installed. Please install tensorizer "
|
||||
"to use this feature with `pip install vllm[tensorizer]`."
|
||||
) from tensorizer_load_fail
|
||||
"to use this feature with `pip install vllm[tensorizer]`. "
|
||||
"Error message: {}".format(tensorizer_error_msg))
|
||||
|
||||
self.tensorizer_config = tensorizer_config
|
||||
self.tensorizer_args = (
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
import copy
|
||||
import weakref
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
@ -32,7 +33,7 @@ class MultiStepWorker(Worker):
|
||||
super().init_device()
|
||||
|
||||
self._proposer = Top1Proposer(
|
||||
self,
|
||||
weakref.proxy(self),
|
||||
self.device,
|
||||
self.vocab_size,
|
||||
max_proposal_len=self.max_model_len,
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
import weakref
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
@ -37,7 +38,7 @@ class NGramWorker(LoraNotSupportedWorkerBase):
|
||||
|
||||
# Current only support Top1Proposer
|
||||
self._proposer = Top1Proposer(
|
||||
self,
|
||||
weakref.proxy(self),
|
||||
device=self.device,
|
||||
vocab_size=self.vocab_size,
|
||||
)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user