[core][distributed] add stateless_init_process_group (#10072)
Signed-off-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
parent
74f2f8a0f1
commit
719c1ca468
@ -120,6 +120,7 @@ steps:
|
|||||||
- tests/spec_decode/e2e/test_integration_dist_tp4
|
- tests/spec_decode/e2e/test_integration_dist_tp4
|
||||||
- tests/compile
|
- tests/compile
|
||||||
commands:
|
commands:
|
||||||
|
- pytest -v -s distributed/test_utils.py
|
||||||
- pytest -v -s compile/test_basic_correctness.py
|
- pytest -v -s compile/test_basic_correctness.py
|
||||||
- pytest -v -s distributed/test_pynccl.py
|
- pytest -v -s distributed/test_pynccl.py
|
||||||
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
|
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
|
||||||
@ -431,7 +432,6 @@ steps:
|
|||||||
- pip install -e ./plugins/vllm_add_dummy_model
|
- pip install -e ./plugins/vllm_add_dummy_model
|
||||||
- pytest -v -s distributed/test_distributed_oot.py
|
- pytest -v -s distributed/test_distributed_oot.py
|
||||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s distributed/test_utils.py
|
|
||||||
|
|
||||||
- label: Multi-step Tests (4 GPUs) # 36min
|
- label: Multi-step Tests (4 GPUs) # 36min
|
||||||
working_dir: "/vllm-workspace/tests"
|
working_dir: "/vllm-workspace/tests"
|
||||||
|
|||||||
@ -1,9 +1,15 @@
|
|||||||
|
import pytest
|
||||||
import ray
|
import ray
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
|
||||||
import vllm.envs as envs
|
import vllm.envs as envs
|
||||||
|
from vllm.distributed.utils import stateless_init_process_group
|
||||||
from vllm.utils import (cuda_device_count_stateless,
|
from vllm.utils import (cuda_device_count_stateless,
|
||||||
update_environment_variables)
|
update_environment_variables)
|
||||||
|
|
||||||
|
from ..utils import multi_gpu_test
|
||||||
|
|
||||||
|
|
||||||
@ray.remote
|
@ray.remote
|
||||||
class _CUDADeviceCountStatelessTestActor:
|
class _CUDADeviceCountStatelessTestActor:
|
||||||
@ -24,10 +30,75 @@ def test_cuda_device_count_stateless():
|
|||||||
CUDA_VISIBLE_DEVICES is changed."""
|
CUDA_VISIBLE_DEVICES is changed."""
|
||||||
actor = _CUDADeviceCountStatelessTestActor.options( # type: ignore
|
actor = _CUDADeviceCountStatelessTestActor.options( # type: ignore
|
||||||
num_gpus=2).remote()
|
num_gpus=2).remote()
|
||||||
assert sorted(ray.get(
|
assert len(
|
||||||
actor.get_cuda_visible_devices.remote()).split(",")) == ["0", "1"]
|
sorted(ray.get(
|
||||||
|
actor.get_cuda_visible_devices.remote()).split(","))) == 2
|
||||||
assert ray.get(actor.get_count.remote()) == 2
|
assert ray.get(actor.get_count.remote()) == 2
|
||||||
ray.get(actor.set_cuda_visible_devices.remote("0"))
|
ray.get(actor.set_cuda_visible_devices.remote("0"))
|
||||||
assert ray.get(actor.get_count.remote()) == 1
|
assert ray.get(actor.get_count.remote()) == 1
|
||||||
ray.get(actor.set_cuda_visible_devices.remote(""))
|
ray.get(actor.set_cuda_visible_devices.remote(""))
|
||||||
assert ray.get(actor.get_count.remote()) == 0
|
assert ray.get(actor.get_count.remote()) == 0
|
||||||
|
|
||||||
|
|
||||||
|
def cpu_worker(rank, WORLD_SIZE):
|
||||||
|
pg1 = stateless_init_process_group(init_method="tcp://127.0.0.1:29500",
|
||||||
|
rank=rank,
|
||||||
|
world_size=WORLD_SIZE,
|
||||||
|
backend="gloo")
|
||||||
|
if rank <= 2:
|
||||||
|
pg2 = stateless_init_process_group(init_method="tcp://127.0.0.1:29501",
|
||||||
|
rank=rank,
|
||||||
|
world_size=3,
|
||||||
|
backend="gloo")
|
||||||
|
data = torch.tensor([rank])
|
||||||
|
dist.all_reduce(data, op=dist.ReduceOp.SUM, group=pg1)
|
||||||
|
if rank <= 2:
|
||||||
|
dist.all_reduce(data, op=dist.ReduceOp.SUM, group=pg2)
|
||||||
|
item = data[0].item()
|
||||||
|
print(f"rank: {rank}, item: {item}")
|
||||||
|
if rank == 3:
|
||||||
|
assert item == 6
|
||||||
|
else:
|
||||||
|
assert item == 18
|
||||||
|
|
||||||
|
|
||||||
|
def gpu_worker(rank, WORLD_SIZE):
|
||||||
|
pg1 = stateless_init_process_group(init_method="tcp://127.0.0.1:29502",
|
||||||
|
rank=rank,
|
||||||
|
world_size=WORLD_SIZE,
|
||||||
|
backend="nccl")
|
||||||
|
if rank <= 2:
|
||||||
|
pg2 = stateless_init_process_group(init_method="tcp://127.0.0.1:29503",
|
||||||
|
rank=rank,
|
||||||
|
world_size=3,
|
||||||
|
backend="nccl")
|
||||||
|
torch.cuda.set_device(rank)
|
||||||
|
data = torch.tensor([rank]).cuda()
|
||||||
|
dist.all_reduce(data, op=dist.ReduceOp.SUM, group=pg1)
|
||||||
|
if rank <= 2:
|
||||||
|
dist.all_reduce(data, op=dist.ReduceOp.SUM, group=pg2)
|
||||||
|
item = data[0].item()
|
||||||
|
print(f"rank: {rank}, item: {item}")
|
||||||
|
if rank == 3:
|
||||||
|
assert item == 6
|
||||||
|
else:
|
||||||
|
assert item == 18
|
||||||
|
|
||||||
|
|
||||||
|
@multi_gpu_test(num_gpus=4)
|
||||||
|
@pytest.mark.parametrize("worker", [cpu_worker, gpu_worker])
|
||||||
|
def test_stateless_init_process_group(worker):
|
||||||
|
WORLD_SIZE = 4
|
||||||
|
from multiprocessing import get_context
|
||||||
|
ctx = get_context("fork")
|
||||||
|
processes = []
|
||||||
|
for i in range(WORLD_SIZE):
|
||||||
|
rank = i
|
||||||
|
processes.append(ctx.Process(target=worker, args=(rank, WORLD_SIZE)))
|
||||||
|
for p in processes:
|
||||||
|
p.start()
|
||||||
|
for p in processes:
|
||||||
|
p.join()
|
||||||
|
for p in processes:
|
||||||
|
assert not p.exitcode
|
||||||
|
print("All processes finished.")
|
||||||
|
|||||||
@ -5,6 +5,11 @@
|
|||||||
from typing import Sequence, Tuple
|
from typing import Sequence, Tuple
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
from torch.distributed import ProcessGroup
|
||||||
|
from torch.distributed.distributed_c10d import (Backend, PrefixStore,
|
||||||
|
_get_default_timeout,
|
||||||
|
is_nccl_available)
|
||||||
|
from torch.distributed.rendezvous import rendezvous
|
||||||
|
|
||||||
import vllm.envs as envs
|
import vllm.envs as envs
|
||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
@ -84,3 +89,71 @@ def get_pp_indices(num_hidden_layers: int, pp_rank: int,
|
|||||||
end_layer = num_hidden_layers
|
end_layer = num_hidden_layers
|
||||||
|
|
||||||
return (start_layer, end_layer)
|
return (start_layer, end_layer)
|
||||||
|
|
||||||
|
|
||||||
|
def stateless_init_process_group(init_method: str, rank: int, world_size: int,
|
||||||
|
backend: str) -> ProcessGroup:
|
||||||
|
"""A replacement for `torch.distributed.init_process_group` that does not
|
||||||
|
pollute the global state.
|
||||||
|
|
||||||
|
If we have process A and process B called `torch.distributed.init_process_group`
|
||||||
|
to form a group, and then we want to form another group with process A, B, C,
|
||||||
|
D, it is not possible in PyTorch, because process A and process B have already
|
||||||
|
formed a group, and process C and process D cannot join that group. This
|
||||||
|
function is a workaround for this issue.
|
||||||
|
|
||||||
|
`torch.distributed.init_process_group` is a global call, while this function
|
||||||
|
is a stateless call. It will return a `ProcessGroup` object that can be used
|
||||||
|
for collective communication. With this function, process A and process B
|
||||||
|
can call `stateless_init_process_group` to form a group, and then process A, B,
|
||||||
|
C, and D can call `stateless_init_process_group` to form another group.
|
||||||
|
""" # noqa
|
||||||
|
|
||||||
|
backend = Backend(backend) # it is basically string
|
||||||
|
timeout = _get_default_timeout(backend)
|
||||||
|
|
||||||
|
store, rank, world_size = next(
|
||||||
|
rendezvous(init_method, rank, world_size, timeout=timeout))
|
||||||
|
store.set_timeout(timeout)
|
||||||
|
|
||||||
|
group_rank = rank
|
||||||
|
group_size = world_size
|
||||||
|
|
||||||
|
# Use a PrefixStore to avoid accidental overrides of keys used by
|
||||||
|
# different systems (e.g. RPC) in case the store is multi-tenant.
|
||||||
|
prefix_store = PrefixStore(init_method, store)
|
||||||
|
|
||||||
|
pg_options = ProcessGroup.Options(backend=backend, timeout=timeout)
|
||||||
|
|
||||||
|
pg: ProcessGroup = ProcessGroup(
|
||||||
|
prefix_store,
|
||||||
|
group_rank,
|
||||||
|
group_size,
|
||||||
|
pg_options,
|
||||||
|
)
|
||||||
|
|
||||||
|
if backend == "gloo":
|
||||||
|
from torch.distributed.distributed_c10d import ProcessGroupGloo
|
||||||
|
backend_class = ProcessGroupGloo(prefix_store,
|
||||||
|
group_rank,
|
||||||
|
group_size,
|
||||||
|
timeout=timeout)
|
||||||
|
backend_type = ProcessGroup.BackendType.GLOO
|
||||||
|
device = torch.device("cpu")
|
||||||
|
elif backend == "nccl":
|
||||||
|
assert is_nccl_available()
|
||||||
|
from torch.distributed.distributed_c10d import ProcessGroupNCCL
|
||||||
|
|
||||||
|
backend_options = ProcessGroupNCCL.Options()
|
||||||
|
backend_options._timeout = timeout
|
||||||
|
|
||||||
|
backend_class = ProcessGroupNCCL(prefix_store, group_rank, group_size,
|
||||||
|
backend_options)
|
||||||
|
backend_type = ProcessGroup.BackendType.NCCL
|
||||||
|
device = torch.device("cuda")
|
||||||
|
|
||||||
|
backend_class._set_sequence_number_for_group()
|
||||||
|
|
||||||
|
pg._register_backend(device, backend_type, backend_class)
|
||||||
|
|
||||||
|
return pg
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user