Dynamically configure shared memory size for moe_align_block_size_kernel (#3376)
This commit is contained in:
parent
b983ba35bd
commit
78b6c4845a
@ -7,10 +7,17 @@
|
|||||||
#include "cuda_compat.h"
|
#include "cuda_compat.h"
|
||||||
#include "dispatch_utils.h"
|
#include "dispatch_utils.h"
|
||||||
|
|
||||||
const static size_t NUM_MAX_EXPERTS = 64;
|
|
||||||
#define CEILDIV(x,y) (((x) + (y) - 1) / (y))
|
#define CEILDIV(x,y) (((x) + (y) - 1) / (y))
|
||||||
|
|
||||||
namespace vllm {
|
namespace vllm {
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
__device__ __forceinline__ int32_t index(int32_t total_col, int32_t row, int32_t col) {
|
||||||
|
// don't worry about overflow because num_experts is relatively small
|
||||||
|
return row * total_col + col;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
template <typename scalar_t>
|
template <typename scalar_t>
|
||||||
__global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
|
__global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
|
||||||
int32_t *sorted_token_ids,
|
int32_t *sorted_token_ids,
|
||||||
@ -21,10 +28,14 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
|
|||||||
size_t numel) {
|
size_t numel) {
|
||||||
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
|
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
|
||||||
const size_t start_idx = threadIdx.x * tokens_per_thread;
|
const size_t start_idx = threadIdx.x * tokens_per_thread;
|
||||||
__shared__ int32_t tokens_cnts[NUM_MAX_EXPERTS + 1][NUM_MAX_EXPERTS];
|
|
||||||
__shared__ int32_t cumsum[NUM_MAX_EXPERTS + 1];
|
extern __shared__ int32_t shared_mem[];
|
||||||
|
|
||||||
|
int32_t* tokens_cnts = shared_mem; // 2d tensor with shape (num_experts + 1, num_experts)
|
||||||
|
int32_t* cumsum = shared_mem + (num_experts + 1) * num_experts; // 1d tensor with shape (num_experts + 1)
|
||||||
|
|
||||||
for (int i = 0; i < num_experts; ++i) {
|
for (int i = 0; i < num_experts; ++i) {
|
||||||
tokens_cnts[threadIdx.x + 1][i] = 0;
|
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -33,15 +44,15 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
|
|||||||
* to expert expert_index.
|
* to expert expert_index.
|
||||||
*/
|
*/
|
||||||
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
|
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
|
||||||
++tokens_cnts[threadIdx.x + 1][topk_ids[i]];
|
++tokens_cnts[index(num_experts, threadIdx.x + 1, topk_ids[i])];
|
||||||
}
|
}
|
||||||
|
|
||||||
__syncthreads();
|
__syncthreads();
|
||||||
|
|
||||||
// For each expert we accumulate the token counts from the different threads.
|
// For each expert we accumulate the token counts from the different threads.
|
||||||
tokens_cnts[0][threadIdx.x] = 0;
|
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
|
||||||
for (int i = 1; i <= blockDim.x; ++i) {
|
for (int i = 1; i <= blockDim.x; ++i) {
|
||||||
tokens_cnts[i][threadIdx.x] += tokens_cnts[i-1][threadIdx.x];
|
tokens_cnts[index(num_experts, i, threadIdx.x)] += tokens_cnts[index(num_experts, i-1, threadIdx.x)];
|
||||||
}
|
}
|
||||||
|
|
||||||
__syncthreads();
|
__syncthreads();
|
||||||
@ -50,7 +61,7 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
|
|||||||
if (threadIdx.x == 0) {
|
if (threadIdx.x == 0) {
|
||||||
cumsum[0] = 0;
|
cumsum[0] = 0;
|
||||||
for (int i = 1; i <= num_experts; ++i) {
|
for (int i = 1; i <= num_experts; ++i) {
|
||||||
cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[blockDim.x][i - 1], block_size) * block_size;
|
cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[index(num_experts, blockDim.x, i - 1)], block_size) * block_size;
|
||||||
}
|
}
|
||||||
*total_tokens_post_pad = cumsum[num_experts];
|
*total_tokens_post_pad = cumsum[num_experts];
|
||||||
}
|
}
|
||||||
@ -78,9 +89,9 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
|
|||||||
* stores the indices of the tokens processed by the expert with expert_id within
|
* stores the indices of the tokens processed by the expert with expert_id within
|
||||||
* the current thread's token shard.
|
* the current thread's token shard.
|
||||||
*/
|
*/
|
||||||
int32_t rank_post_pad = tokens_cnts[threadIdx.x][expert_id] + cumsum[expert_id];
|
int32_t rank_post_pad = tokens_cnts[index(num_experts, threadIdx.x, expert_id)] + cumsum[expert_id];
|
||||||
sorted_token_ids[rank_post_pad] = i;
|
sorted_token_ids[rank_post_pad] = i;
|
||||||
++tokens_cnts[threadIdx.x][expert_id];
|
++tokens_cnts[index(num_experts, threadIdx.x, expert_id)];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -93,11 +104,16 @@ void moe_align_block_size(
|
|||||||
torch::Tensor experts_ids,
|
torch::Tensor experts_ids,
|
||||||
torch::Tensor num_tokens_post_pad) {
|
torch::Tensor num_tokens_post_pad) {
|
||||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
assert(num_experts <= NUM_MAX_EXPERTS);
|
|
||||||
VLLM_DISPATCH_INTEGRAL_TYPES(
|
VLLM_DISPATCH_INTEGRAL_TYPES(
|
||||||
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
|
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
|
||||||
vllm::moe_align_block_size_kernel<scalar_t><<<1, num_experts, 0, stream>>>(
|
// calc needed amount of shared mem for `tokens_cnts` and `cumsum` tensors
|
||||||
topk_ids.data_ptr<scalar_t>(),
|
const int32_t shared_mem = ((num_experts + 1) * num_experts + (num_experts + 1)) * sizeof(int32_t);
|
||||||
|
|
||||||
|
// set dynamic shared mem
|
||||||
|
auto kernel = vllm::moe_align_block_size_kernel<scalar_t>;
|
||||||
|
AT_CUDA_CHECK(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, shared_mem));
|
||||||
|
kernel<<<1, num_experts, shared_mem, stream>>>(
|
||||||
|
topk_ids.data_ptr<scalar_t>(),
|
||||||
sorted_token_ids.data_ptr<int32_t>(),
|
sorted_token_ids.data_ptr<int32_t>(),
|
||||||
experts_ids.data_ptr<int32_t>(),
|
experts_ids.data_ptr<int32_t>(),
|
||||||
num_tokens_post_pad.data_ptr<int32_t>(),
|
num_tokens_post_pad.data_ptr<int32_t>(),
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user