Dynamically configure shared memory size for moe_align_block_size_kernel (#3376)

This commit is contained in:
akhoroshev 2024-03-15 04:18:07 +03:00 committed by GitHub
parent b983ba35bd
commit 78b6c4845a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -7,10 +7,17 @@
#include "cuda_compat.h" #include "cuda_compat.h"
#include "dispatch_utils.h" #include "dispatch_utils.h"
const static size_t NUM_MAX_EXPERTS = 64;
#define CEILDIV(x,y) (((x) + (y) - 1) / (y)) #define CEILDIV(x,y) (((x) + (y) - 1) / (y))
namespace vllm { namespace vllm {
namespace {
__device__ __forceinline__ int32_t index(int32_t total_col, int32_t row, int32_t col) {
// don't worry about overflow because num_experts is relatively small
return row * total_col + col;
}
}
template <typename scalar_t> template <typename scalar_t>
__global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids, __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
int32_t *sorted_token_ids, int32_t *sorted_token_ids,
@ -21,10 +28,14 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
size_t numel) { size_t numel) {
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x); const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread; const size_t start_idx = threadIdx.x * tokens_per_thread;
__shared__ int32_t tokens_cnts[NUM_MAX_EXPERTS + 1][NUM_MAX_EXPERTS];
__shared__ int32_t cumsum[NUM_MAX_EXPERTS + 1]; extern __shared__ int32_t shared_mem[];
int32_t* tokens_cnts = shared_mem; // 2d tensor with shape (num_experts + 1, num_experts)
int32_t* cumsum = shared_mem + (num_experts + 1) * num_experts; // 1d tensor with shape (num_experts + 1)
for (int i = 0; i < num_experts; ++i) { for (int i = 0; i < num_experts; ++i) {
tokens_cnts[threadIdx.x + 1][i] = 0; tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
} }
/** /**
@ -33,15 +44,15 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
* to expert expert_index. * to expert expert_index.
*/ */
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) { for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
++tokens_cnts[threadIdx.x + 1][topk_ids[i]]; ++tokens_cnts[index(num_experts, threadIdx.x + 1, topk_ids[i])];
} }
__syncthreads(); __syncthreads();
// For each expert we accumulate the token counts from the different threads. // For each expert we accumulate the token counts from the different threads.
tokens_cnts[0][threadIdx.x] = 0; tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
for (int i = 1; i <= blockDim.x; ++i) { for (int i = 1; i <= blockDim.x; ++i) {
tokens_cnts[i][threadIdx.x] += tokens_cnts[i-1][threadIdx.x]; tokens_cnts[index(num_experts, i, threadIdx.x)] += tokens_cnts[index(num_experts, i-1, threadIdx.x)];
} }
__syncthreads(); __syncthreads();
@ -50,7 +61,7 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
if (threadIdx.x == 0) { if (threadIdx.x == 0) {
cumsum[0] = 0; cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) { for (int i = 1; i <= num_experts; ++i) {
cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[blockDim.x][i - 1], block_size) * block_size; cumsum[i] = cumsum[i-1] + CEILDIV(tokens_cnts[index(num_experts, blockDim.x, i - 1)], block_size) * block_size;
} }
*total_tokens_post_pad = cumsum[num_experts]; *total_tokens_post_pad = cumsum[num_experts];
} }
@ -78,9 +89,9 @@ __global__ void moe_align_block_size_kernel(scalar_t *__restrict__ topk_ids,
* stores the indices of the tokens processed by the expert with expert_id within * stores the indices of the tokens processed by the expert with expert_id within
* the current thread's token shard. * the current thread's token shard.
*/ */
int32_t rank_post_pad = tokens_cnts[threadIdx.x][expert_id] + cumsum[expert_id]; int32_t rank_post_pad = tokens_cnts[index(num_experts, threadIdx.x, expert_id)] + cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i; sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[threadIdx.x][expert_id]; ++tokens_cnts[index(num_experts, threadIdx.x, expert_id)];
} }
} }
} }
@ -93,11 +104,16 @@ void moe_align_block_size(
torch::Tensor experts_ids, torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad) { torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
assert(num_experts <= NUM_MAX_EXPERTS);
VLLM_DISPATCH_INTEGRAL_TYPES( VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] { topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
vllm::moe_align_block_size_kernel<scalar_t><<<1, num_experts, 0, stream>>>( // calc needed amount of shared mem for `tokens_cnts` and `cumsum` tensors
topk_ids.data_ptr<scalar_t>(), const int32_t shared_mem = ((num_experts + 1) * num_experts + (num_experts + 1)) * sizeof(int32_t);
// set dynamic shared mem
auto kernel = vllm::moe_align_block_size_kernel<scalar_t>;
AT_CUDA_CHECK(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, shared_mem));
kernel<<<1, num_experts, shared_mem, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(), sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(), experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_tokens_post_pad.data_ptr<int32_t>(),