Inclusion of InternVLChatModel In PP_SUPPORTED_MODELS(Pipeline Parallelism) (#7860)
This commit is contained in:
parent
288a938872
commit
8685ba1a1e
@ -18,23 +18,26 @@ logger = init_logger("test_pipeline_parallel")
|
|||||||
VLLM_MULTI_NODE = os.getenv("VLLM_MULTI_NODE", "0") == "1"
|
VLLM_MULTI_NODE = os.getenv("VLLM_MULTI_NODE", "0") == "1"
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(("TP_SIZE, PP_SIZE, EAGER_MODE, CHUNKED_PREFILL, "
|
@pytest.mark.parametrize(
|
||||||
|
("TP_SIZE, PP_SIZE, EAGER_MODE, CHUNKED_PREFILL, TRUST_REMOTE_CODE, "
|
||||||
"MODEL_NAME, DIST_BACKEND"),
|
"MODEL_NAME, DIST_BACKEND"),
|
||||||
[
|
[
|
||||||
(2, 2, 0, 1, "meta-llama/Meta-Llama-3-8B", "mp"),
|
(2, 2, 0, 1, 0, "meta-llama/Meta-Llama-3-8B", "mp"),
|
||||||
(2, 2, 1, 0, "meta-llama/Meta-Llama-3-8B", "mp"),
|
(2, 2, 1, 0, 0, "meta-llama/Meta-Llama-3-8B", "mp"),
|
||||||
(1, 3, 0, 0, "meta-llama/Meta-Llama-3-8B", "mp"),
|
(1, 3, 0, 0, 0, "meta-llama/Meta-Llama-3-8B", "mp"),
|
||||||
(1, 4, 0, 1, "meta-llama/Meta-Llama-3-8B", "mp"),
|
(1, 4, 0, 1, 0, "meta-llama/Meta-Llama-3-8B", "mp"),
|
||||||
(1, 4, 1, 0, "meta-llama/Meta-Llama-3-8B", "mp"),
|
(1, 4, 1, 0, 0, "meta-llama/Meta-Llama-3-8B", "mp"),
|
||||||
(1, 3, 0, 0, "meta-llama/Meta-Llama-3-8B", "ray"),
|
(1, 3, 0, 0, 0, "meta-llama/Meta-Llama-3-8B", "ray"),
|
||||||
(1, 4, 0, 1, "meta-llama/Meta-Llama-3-8B", "ray"),
|
(1, 4, 0, 1, 0, "meta-llama/Meta-Llama-3-8B", "ray"),
|
||||||
(1, 4, 1, 0, "meta-llama/Meta-Llama-3-8B", "ray"),
|
(1, 4, 1, 0, 0, "meta-llama/Meta-Llama-3-8B", "ray"),
|
||||||
(2, 2, 1, 0, "meta-llama/Meta-Llama-3-8B", "ray"),
|
(2, 2, 1, 0, 0, "meta-llama/Meta-Llama-3-8B", "ray"),
|
||||||
(2, 2, 0, 1, "meta-llama/Meta-Llama-3-8B", "ray"),
|
(2, 2, 0, 1, 0, "meta-llama/Meta-Llama-3-8B", "ray"),
|
||||||
])
|
(2, 2, 1, 1, 1, "internlm/internlm2_5-7b-chat", "ray"),
|
||||||
|
],
|
||||||
|
)
|
||||||
@fork_new_process_for_each_test
|
@fork_new_process_for_each_test
|
||||||
def test_compare_tp(TP_SIZE, PP_SIZE, EAGER_MODE, CHUNKED_PREFILL, MODEL_NAME,
|
def test_compare_tp(TP_SIZE, PP_SIZE, EAGER_MODE, CHUNKED_PREFILL,
|
||||||
DIST_BACKEND):
|
TRUST_REMOTE_CODE, MODEL_NAME, DIST_BACKEND):
|
||||||
if VLLM_MULTI_NODE and DIST_BACKEND == "mp":
|
if VLLM_MULTI_NODE and DIST_BACKEND == "mp":
|
||||||
pytest.skip("Skipping multi-node pipeline parallel test for "
|
pytest.skip("Skipping multi-node pipeline parallel test for "
|
||||||
"multiprocessing distributed backend")
|
"multiprocessing distributed backend")
|
||||||
@ -71,6 +74,9 @@ def test_compare_tp(TP_SIZE, PP_SIZE, EAGER_MODE, CHUNKED_PREFILL, MODEL_NAME,
|
|||||||
if EAGER_MODE:
|
if EAGER_MODE:
|
||||||
pp_args.append("--enforce-eager")
|
pp_args.append("--enforce-eager")
|
||||||
tp_args.append("--enforce-eager")
|
tp_args.append("--enforce-eager")
|
||||||
|
if TRUST_REMOTE_CODE:
|
||||||
|
pp_args.append("--trust-remote-code")
|
||||||
|
tp_args.append("--trust-remote-code")
|
||||||
pp_env = None
|
pp_env = None
|
||||||
if (DIST_BACKEND == "ray" and TP_SIZE == 2 and PP_SIZE == 2
|
if (DIST_BACKEND == "ray" and TP_SIZE == 2 and PP_SIZE == 2
|
||||||
and CHUNKED_PREFILL):
|
and CHUNKED_PREFILL):
|
||||||
|
|||||||
@ -178,6 +178,11 @@ def compare_two_settings(model: str,
|
|||||||
env2: The second set of environment variables to pass to the API server.
|
env2: The second set of environment variables to pass to the API server.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
trust_remote_code = "--trust-remote-code"
|
||||||
|
if trust_remote_code in arg1 or trust_remote_code in arg2:
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model,
|
||||||
|
trust_remote_code=True)
|
||||||
|
else:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model)
|
tokenizer = AutoTokenizer.from_pretrained(model)
|
||||||
|
|
||||||
prompt = "Hello, my name is"
|
prompt = "Hello, my name is"
|
||||||
|
|||||||
@ -35,18 +35,20 @@ _EMBEDDING_MODEL_MAX_NUM_BATCHED_TOKENS = 32768
|
|||||||
_MULTIMODAL_MODEL_MAX_NUM_BATCHED_TOKENS = 4096
|
_MULTIMODAL_MODEL_MAX_NUM_BATCHED_TOKENS = 4096
|
||||||
|
|
||||||
_PP_SUPPORTED_MODELS = [
|
_PP_SUPPORTED_MODELS = [
|
||||||
"AquilaModel",
|
|
||||||
"AquilaForCausalLM",
|
"AquilaForCausalLM",
|
||||||
|
"AquilaModel",
|
||||||
"DeepseekV2ForCausalLM",
|
"DeepseekV2ForCausalLM",
|
||||||
|
"GPT2LMHeadModel",
|
||||||
|
"InternLM2ForCausalLM",
|
||||||
"InternLMForCausalLM",
|
"InternLMForCausalLM",
|
||||||
|
"InternVLChatModel",
|
||||||
"JAISLMHeadModel",
|
"JAISLMHeadModel",
|
||||||
"LlamaForCausalLM",
|
"LlamaForCausalLM",
|
||||||
"LLaMAForCausalLM",
|
"LLaMAForCausalLM",
|
||||||
"MistralForCausalLM",
|
"MistralForCausalLM",
|
||||||
"Phi3ForCausalLM",
|
|
||||||
"GPT2LMHeadModel",
|
|
||||||
"MixtralForCausalLM",
|
"MixtralForCausalLM",
|
||||||
"NemotronForCausalLM",
|
"NemotronForCausalLM",
|
||||||
|
"Phi3ForCausalLM",
|
||||||
"Qwen2ForCausalLM",
|
"Qwen2ForCausalLM",
|
||||||
"Qwen2MoeForCausalLM",
|
"Qwen2MoeForCausalLM",
|
||||||
"QWenLMHeadModel",
|
"QWenLMHeadModel",
|
||||||
|
|||||||
@ -1,6 +1,6 @@
|
|||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from typing import Any, Dict, Iterable, List, Optional, Tuple
|
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
@ -8,7 +8,7 @@ from transformers import PretrainedConfig
|
|||||||
|
|
||||||
from vllm.attention import Attention, AttentionMetadata
|
from vllm.attention import Attention, AttentionMetadata
|
||||||
from vllm.config import CacheConfig
|
from vllm.config import CacheConfig
|
||||||
from vllm.distributed import (get_tensor_model_parallel_rank,
|
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
|
||||||
get_tensor_model_parallel_world_size,
|
get_tensor_model_parallel_world_size,
|
||||||
split_tensor_along_last_dim,
|
split_tensor_along_last_dim,
|
||||||
tensor_model_parallel_all_gather)
|
tensor_model_parallel_all_gather)
|
||||||
@ -28,6 +28,9 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|||||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||||
from vllm.sequence import IntermediateTensors
|
from vllm.sequence import IntermediateTensors
|
||||||
|
|
||||||
|
from .utils import (is_pp_missing_parameter,
|
||||||
|
make_empty_intermediate_tensors_factory, make_layers)
|
||||||
|
|
||||||
|
|
||||||
class InternLM2MLP(nn.Module):
|
class InternLM2MLP(nn.Module):
|
||||||
|
|
||||||
@ -234,6 +237,7 @@ class InternLM2Model(nn.Module):
|
|||||||
config: PretrainedConfig,
|
config: PretrainedConfig,
|
||||||
cache_config: Optional[CacheConfig] = None,
|
cache_config: Optional[CacheConfig] = None,
|
||||||
quant_config: Optional[QuantizationConfig] = None,
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
prefix: str = "",
|
||||||
) -> None:
|
) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
@ -243,11 +247,15 @@ class InternLM2Model(nn.Module):
|
|||||||
config.vocab_size,
|
config.vocab_size,
|
||||||
config.hidden_size,
|
config.hidden_size,
|
||||||
)
|
)
|
||||||
self.layers = nn.ModuleList([
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||||
InternLMDecoderLayer(config, cache_config, quant_config)
|
config.num_hidden_layers,
|
||||||
for _ in range(config.num_hidden_layers)
|
lambda prefix: InternLMDecoderLayer(config, cache_config,
|
||||||
])
|
quant_config),
|
||||||
|
prefix=f"{prefix}.layers")
|
||||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||||
|
self.make_empty_intermediate_tensors = (
|
||||||
|
make_empty_intermediate_tensors_factory(
|
||||||
|
["hidden_states", "residual"], config.hidden_size))
|
||||||
|
|
||||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||||
return self.tok_embeddings(input_ids)
|
return self.tok_embeddings(input_ids)
|
||||||
@ -260,21 +268,31 @@ class InternLM2Model(nn.Module):
|
|||||||
attn_metadata: AttentionMetadata,
|
attn_metadata: AttentionMetadata,
|
||||||
intermediate_tensors: IntermediateTensors = None,
|
intermediate_tensors: IntermediateTensors = None,
|
||||||
inputs_embeds: Optional[torch.Tensor] = None,
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||||||
) -> torch.Tensor:
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||||
|
if get_pp_group().is_first_rank:
|
||||||
if inputs_embeds is not None:
|
if inputs_embeds is not None:
|
||||||
hidden_states = inputs_embeds
|
hidden_states = inputs_embeds
|
||||||
else:
|
else:
|
||||||
hidden_states = self.tok_embeddings(input_ids)
|
hidden_states = self.tok_embeddings(input_ids)
|
||||||
residual = None
|
residual = None
|
||||||
for i in range(len(self.layers)):
|
else:
|
||||||
|
assert intermediate_tensors is not None
|
||||||
|
hidden_states = intermediate_tensors["hidden_states"]
|
||||||
|
residual = intermediate_tensors["residual"]
|
||||||
|
for i in range(self.start_layer, self.end_layer):
|
||||||
layer = self.layers[i]
|
layer = self.layers[i]
|
||||||
hidden_states, residual = layer(
|
hidden_states, residual = layer(
|
||||||
positions,
|
positions,
|
||||||
hidden_states,
|
hidden_states,
|
||||||
kv_caches[i],
|
kv_caches[i - self.start_layer],
|
||||||
attn_metadata,
|
attn_metadata,
|
||||||
residual,
|
residual,
|
||||||
)
|
)
|
||||||
|
if not get_pp_group().is_last_rank:
|
||||||
|
return IntermediateTensors({
|
||||||
|
"hidden_states": hidden_states,
|
||||||
|
"residual": residual
|
||||||
|
})
|
||||||
hidden_states, _ = self.norm(hidden_states, residual)
|
hidden_states, _ = self.norm(hidden_states, residual)
|
||||||
return hidden_states
|
return hidden_states
|
||||||
|
|
||||||
@ -298,6 +316,8 @@ class InternLM2ForCausalLM(nn.Module):
|
|||||||
self.output.weight = self.model.tok_embeddings.weight
|
self.output.weight = self.model.tok_embeddings.weight
|
||||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||||
self.sampler = Sampler()
|
self.sampler = Sampler()
|
||||||
|
self.make_empty_intermediate_tensors = (
|
||||||
|
self.model.make_empty_intermediate_tensors)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
@ -308,7 +328,7 @@ class InternLM2ForCausalLM(nn.Module):
|
|||||||
intermediate_tensors: IntermediateTensors,
|
intermediate_tensors: IntermediateTensors,
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||||
attn_metadata)
|
attn_metadata, intermediate_tensors)
|
||||||
return hidden_states
|
return hidden_states
|
||||||
|
|
||||||
def compute_logits(
|
def compute_logits(
|
||||||
@ -345,6 +365,8 @@ class InternLM2ForCausalLM(nn.Module):
|
|||||||
# Skip loading extra bias for GPTQ models.
|
# Skip loading extra bias for GPTQ models.
|
||||||
if name.endswith(".bias") and name not in params_dict:
|
if name.endswith(".bias") and name not in params_dict:
|
||||||
continue
|
continue
|
||||||
|
if is_pp_missing_parameter(name, self):
|
||||||
|
continue
|
||||||
param = params_dict[name]
|
param = params_dict[name]
|
||||||
weight_loader = param.weight_loader
|
weight_loader = param.weight_loader
|
||||||
weight_loader(param, loaded_weight, shard_id)
|
weight_loader(param, loaded_weight, shard_id)
|
||||||
@ -353,6 +375,8 @@ class InternLM2ForCausalLM(nn.Module):
|
|||||||
# Skip loading extra bias for GPTQ models.
|
# Skip loading extra bias for GPTQ models.
|
||||||
if name.endswith(".bias") and name not in params_dict:
|
if name.endswith(".bias") and name not in params_dict:
|
||||||
continue
|
continue
|
||||||
|
if is_pp_missing_parameter(name, self):
|
||||||
|
continue
|
||||||
param = params_dict[name]
|
param = params_dict[name]
|
||||||
weight_loader = getattr(param, "weight_loader",
|
weight_loader = getattr(param, "weight_loader",
|
||||||
default_weight_loader)
|
default_weight_loader)
|
||||||
|
|||||||
@ -341,6 +341,8 @@ class InternVLChatModel(nn.Module, SupportsMultiModal):
|
|||||||
nn.Linear(llm_hidden_size, llm_hidden_size))
|
nn.Linear(llm_hidden_size, llm_hidden_size))
|
||||||
|
|
||||||
self.img_context_token_id = None
|
self.img_context_token_id = None
|
||||||
|
self.make_empty_intermediate_tensors = (
|
||||||
|
self.language_model.make_empty_intermediate_tensors)
|
||||||
|
|
||||||
def pixel_shuffle(self, x, scale_factor=0.5):
|
def pixel_shuffle(self, x, scale_factor=0.5):
|
||||||
n, w, h, c = x.size()
|
n, w, h, c = x.size()
|
||||||
@ -461,7 +463,7 @@ class InternVLChatModel(nn.Module, SupportsMultiModal):
|
|||||||
positions,
|
positions,
|
||||||
kv_caches,
|
kv_caches,
|
||||||
attn_metadata,
|
attn_metadata,
|
||||||
None,
|
intermediate_tensors,
|
||||||
inputs_embeds=inputs_embeds)
|
inputs_embeds=inputs_embeds)
|
||||||
return hidden_states
|
return hidden_states
|
||||||
|
|
||||||
|
|||||||
@ -12,6 +12,7 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
|||||||
from vllm.model_executor.model_loader.loader import build_model
|
from vllm.model_executor.model_loader.loader import build_model
|
||||||
from vllm.model_executor.models import ModelRegistry
|
from vllm.model_executor.models import ModelRegistry
|
||||||
from vllm.multimodal.base import NestedTensors
|
from vllm.multimodal.base import NestedTensors
|
||||||
|
from vllm.sequence import IntermediateTensors
|
||||||
from vllm.utils import is_pin_memory_available
|
from vllm.utils import is_pin_memory_available
|
||||||
|
|
||||||
|
|
||||||
@ -279,3 +280,18 @@ def is_pp_missing_parameter(name: str, model: torch.nn.Module) -> bool:
|
|||||||
if name.startswith(missing_layer_name):
|
if name.startswith(missing_layer_name):
|
||||||
return True
|
return True
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def make_empty_intermediate_tensors_factory(keys: List[str], hidden_size: int):
|
||||||
|
|
||||||
|
def make_empty_intermediate_tensors(
|
||||||
|
batch_size: int, dtype: torch.dtype,
|
||||||
|
device: torch.device) -> IntermediateTensors:
|
||||||
|
return IntermediateTensors({
|
||||||
|
key: torch.zeros((batch_size, hidden_size),
|
||||||
|
dtype=dtype,
|
||||||
|
device=device)
|
||||||
|
for key in keys
|
||||||
|
})
|
||||||
|
|
||||||
|
return make_empty_intermediate_tensors
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user