Fix input_metadata.selected_token_indices in worker prepare_inputs (#1546)

This commit is contained in:
Yanming W 2023-11-09 06:19:12 +08:00 committed by GitHub
parent 06458a0b42
commit 8efe23f150
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 47 additions and 1 deletions

View File

@ -0,0 +1,44 @@
# pylint: disable=protected-access
import random
import torch
from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata
from vllm.worker.worker import Worker
def test_worker_prepare_inputs_for_prompt():
worker = Worker(None, None, None)
worker.block_size = 16
batch_size = random.randint(1, 256)
prompt_lens = []
seq_group_metadata_list = []
for i in range(batch_size):
# make sure all tokens fit into one block
prompt_len = i % (worker.block_size - 1) + 1
prompt_lens.append(prompt_len)
seq_data = list(range(prompt_len))
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: SequenceData(seq_data)},
sampling_params=SamplingParams(temperature=0),
block_tables={0: [1]},
))
expected_selected_token_indices = []
selected_token_start_idx = 0
max_seq_len = max(prompt_lens)
for prompt_len in prompt_lens:
expected_selected_token_indices.append(selected_token_start_idx +
prompt_len - 1)
selected_token_start_idx += max_seq_len
input_tokens, input_positions, input_metadata = worker._prepare_inputs(
seq_group_metadata_list)
assert input_tokens.shape == input_positions.shape == (batch_size,
max_seq_len)
torch.testing.assert_close(input_tokens, input_positions)
actual = input_metadata.selected_token_indices
expected = torch.tensor(expected_selected_token_indices,
device=actual.device,
dtype=actual.dtype)
torch.testing.assert_close(actual, expected)

View File

@ -211,12 +211,14 @@ class Worker:
context_lens: List[int] = []
generation_block_tables: List[List[int]] = []
max_seq_len = max(prompt_lens) if prompt_lens else 1
for seq_group_metadata in seq_group_metadata_list:
for i, seq_group_metadata in enumerate(seq_group_metadata_list):
if seq_group_metadata.is_prompt:
# We need to do this in this loop as we need to know max_seq_len
assert len(
seq_ids) == 1, "Prompt input should have only one seq."
sampling_params = seq_group_metadata.sampling_params
assert len(prompt_lens) == len(seq_group_metadata_list)
prompt_len = prompt_lens[i]
if sampling_params.prompt_logprobs is not None:
selected_token_indices.extend(
range(selected_token_start_idx,