[Model] LoRA gptbigcode implementation (#3949)
This commit is contained in:
parent
a3a73ab069
commit
97b030005c
@ -28,6 +28,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
|
||||
f(in_T, out_T, W_T, narrow, 2752) \
|
||||
f(in_T, out_T, W_T, narrow, 2816) \
|
||||
f(in_T, out_T, W_T, narrow, 3072) \
|
||||
f(in_T, out_T, W_T, narrow, 3328) \
|
||||
f(in_T, out_T, W_T, narrow, 3456) \
|
||||
f(in_T, out_T, W_T, narrow, 3584) \
|
||||
f(in_T, out_T, W_T, narrow, 4096) \
|
||||
@ -36,6 +37,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
|
||||
f(in_T, out_T, W_T, narrow, 5504) \
|
||||
f(in_T, out_T, W_T, narrow, 5632) \
|
||||
f(in_T, out_T, W_T, narrow, 6144) \
|
||||
f(in_T, out_T, W_T, narrow, 6400) \
|
||||
f(in_T, out_T, W_T, narrow, 6848) \
|
||||
f(in_T, out_T, W_T, narrow, 6912) \
|
||||
f(in_T, out_T, W_T, narrow, 7168) \
|
||||
@ -97,6 +99,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
|
||||
f(in_T, out_T, W_T, 2752, narrow) \
|
||||
f(in_T, out_T, W_T, 2816, narrow) \
|
||||
f(in_T, out_T, W_T, 3072, narrow) \
|
||||
f(in_T, out_T, W_T, 3328, narrow) \
|
||||
f(in_T, out_T, W_T, 3456, narrow) \
|
||||
f(in_T, out_T, W_T, 3584, narrow) \
|
||||
f(in_T, out_T, W_T, 4096, narrow) \
|
||||
@ -105,6 +108,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
|
||||
f(in_T, out_T, W_T, 5504, narrow) \
|
||||
f(in_T, out_T, W_T, 5632, narrow) \
|
||||
f(in_T, out_T, W_T, 6144, narrow) \
|
||||
f(in_T, out_T, W_T, 6400, narrow) \
|
||||
f(in_T, out_T, W_T, 6848, narrow) \
|
||||
f(in_T, out_T, W_T, 6912, narrow) \
|
||||
f(in_T, out_T, W_T, 7168, narrow) \
|
||||
|
||||
@ -58,6 +58,7 @@ H1 = H2 = [
|
||||
2560,
|
||||
2752,
|
||||
3072,
|
||||
3328,
|
||||
3456,
|
||||
3584,
|
||||
4096,
|
||||
@ -66,6 +67,7 @@ H1 = H2 = [
|
||||
5504,
|
||||
5632,
|
||||
6144,
|
||||
6400,
|
||||
6848,
|
||||
6912,
|
||||
7168,
|
||||
|
||||
@ -310,7 +310,9 @@ class LoRAModel:
|
||||
if part_name not in expected_lora_modules:
|
||||
unexpected_modules.append(module)
|
||||
# loaded lora's target modules must be a subset of expected_lora_modules
|
||||
|
||||
if unexpected_modules:
|
||||
print(unexpected_modules, "modules")
|
||||
raise ValueError(
|
||||
f"While loading {lora_dir}, expected"
|
||||
f" target modules in {expected_lora_modules}"
|
||||
|
||||
@ -25,7 +25,7 @@ from torch import nn
|
||||
from transformers import GPTBigCodeConfig
|
||||
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.config import CacheConfig
|
||||
from vllm.config import CacheConfig, LoRAConfig
|
||||
from vllm.distributed import get_tensor_model_parallel_world_size
|
||||
from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
@ -191,14 +191,19 @@ class GPTBigCodeModel(nn.Module):
|
||||
config: GPTBigCodeConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
assert not config.add_cross_attention
|
||||
|
||||
self.embed_dim = config.hidden_size
|
||||
|
||||
self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
|
||||
lora_vocab = (lora_config.lora_extra_vocab_size *
|
||||
(lora_config.max_loras or 1)) if lora_config else 0
|
||||
self.vocab_size = config.vocab_size + lora_vocab
|
||||
self.wte = VocabParallelEmbedding(self.vocab_size,
|
||||
self.embed_dim,
|
||||
org_num_embeddings=config.vocab_size)
|
||||
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
||||
self.h = nn.ModuleList([
|
||||
GPTBigCodeBlock(config, cache_config, quant_config)
|
||||
@ -226,19 +231,35 @@ class GPTBigCodeModel(nn.Module):
|
||||
|
||||
|
||||
class GPTBigCodeForCausalLM(nn.Module):
|
||||
packed_modules_mapping = {"c_attn": ["c_attn"]}
|
||||
|
||||
supported_lora_modules = ["c_fc", "c_proj", "wte", "lm_head", "c_attn"]
|
||||
|
||||
embedding_modules = {
|
||||
"wte": "input_embeddings",
|
||||
"lm_head": "output_embeddings",
|
||||
}
|
||||
|
||||
embedding_padding_modules = []
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: GPTBigCodeConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.quant_config = quant_config
|
||||
self.transformer = GPTBigCodeModel(config, cache_config, quant_config)
|
||||
self.transformer = GPTBigCodeModel(config, cache_config, quant_config,
|
||||
lora_config)
|
||||
self.lm_head_weight = self.transformer.wte.weight
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
if lora_config:
|
||||
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
||||
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
||||
config.vocab_size)
|
||||
self.sampler = Sampler()
|
||||
|
||||
def forward(
|
||||
|
||||
Loading…
Reference in New Issue
Block a user