[dbrx] refactor dbrx experts to extend FusedMoe class (#8518)

This commit is contained in:
Divakar Verma 2024-09-21 16:09:39 -05:00 committed by GitHub
parent ec4aaad812
commit 9dc7c6c7f3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -7,9 +7,8 @@ import torch.nn as nn
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig
from vllm.distributed import (get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce)
from vllm.model_executor.layers.fused_moe import fused_moe
get_tensor_model_parallel_world_size)
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.linear import (QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
@ -22,7 +21,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.utils import set_weight_attrs
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.dbrx import DbrxConfig
@ -54,13 +52,7 @@ class DbrxRouter(nn.Module):
return router_logits
class DbrxExperts(nn.Module):
"""A tensor-parallel MoE implementation for DBRX.
Each expert's weights are sharded across all ranks and a fused MoE
kernel is used for the forward pass, and finally we reduce the outputs
across ranks.
"""
class DbrxExperts(FusedMoE):
def __init__(
self,
@ -68,49 +60,24 @@ class DbrxExperts(nn.Module):
quant_config: Optional[QuantizationConfig] = None,
params_dtype: Optional[torch.dtype] = None,
):
super().__init__()
super().__init__(
num_experts=config.ffn_config.moe_num_experts,
top_k=config.ffn_config.moe_top_k,
hidden_size=config.d_model,
intermediate_size=config.ffn_config.ffn_hidden_size,
params_dtype=params_dtype,
reduce_results=True,
renormalize=True,
quant_config=quant_config,
tp_size=get_tensor_model_parallel_world_size(),
)
self.config = config
self.tp_size = get_tensor_model_parallel_world_size()
self.num_total_experts = config.ffn_config.moe_num_experts
self.top_k = config.ffn_config.moe_top_k
self.d_model = config.d_model
self.intermediate_size = (config.ffn_config.ffn_hidden_size //
self.intermediate_size = (self.config.ffn_config.ffn_hidden_size //
self.tp_size)
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
self.router = DbrxRouter(config, self.params_dtype)
self.ws = nn.Parameter(
torch.empty(
self.num_total_experts,
2 * self.intermediate_size,
self.d_model,
device="cuda",
dtype=self.params_dtype,
))
self.w2s = nn.Parameter(
torch.empty(
self.num_total_experts,
self.d_model,
self.intermediate_size,
device="cuda",
dtype=self.params_dtype,
))
set_weight_attrs(
self.ws,
{
"weight_loader": self.weight_loader,
},
)
set_weight_attrs(
self.w2s,
{
"weight_loader": self.weight_loader,
},
)
# Define custom weight loader for dbrx model
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
weight_name: str):
tp_rank = get_tensor_model_parallel_rank()
@ -140,26 +107,40 @@ class DbrxExperts(nn.Module):
).transpose(1, 2)
param_data[:] = loaded_weight[:, :, shard]
class DbrxMoE(nn.Module):
"""A tensor-parallel MoE implementation for DBRX.
Each expert's weights are sharded across all ranks and a fused MoE
kernel is used for the forward pass, and finally we reduce the outputs
across ranks.
"""
def __init__(
self,
config: DbrxConfig,
quant_config: Optional[QuantizationConfig] = None,
params_dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.d_model = config.d_model
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
self.router = DbrxRouter(config, self.params_dtype)
self.experts = DbrxExperts(config=config,
quant_config=quant_config,
params_dtype=self.params_dtype)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_size = hidden_states.shape
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(-1, self.d_model)
# router_logits: (num_tokens, n_experts)
router_logits = self.router(hidden_states)
final_hidden_states = fused_moe(
hidden_states,
self.ws,
self.w2s,
router_logits,
self.top_k,
renormalize=True,
inplace=True,
)
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(
final_hidden_states)
return final_hidden_states.view(num_tokens, hidden_size)
final_hidden_states = self.experts(hidden_states, router_logits)
return final_hidden_states.view(orig_shape)
class DbrxAttention(nn.Module):
@ -288,7 +269,7 @@ class DbrxBlock(nn.Module):
super().__init__()
self.norm_attn_norm = DbrxFusedNormAttention(config, cache_config,
quant_config)
self.ffn = DbrxExperts(config, quant_config)
self.ffn = DbrxMoE(config, quant_config)
def forward(
self,
@ -409,9 +390,10 @@ class DbrxForCausalLM(nn.Module):
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
expert_params_mapping = [(
"ws" if weight_name in ["w1", "v1"] else "w2s",
f"experts.mlp.{weight_name}",
"w13_weight" if weight_name in ["w1", "v1"] else "w2_weight",
f"mlp.{weight_name}",
) for weight_name in ["w1", "v1", "w2"]]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights: