[dbrx] refactor dbrx experts to extend FusedMoe class (#8518)
This commit is contained in:
parent
ec4aaad812
commit
9dc7c6c7f3
@ -7,9 +7,8 @@ import torch.nn as nn
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.config import CacheConfig
|
||||
from vllm.distributed import (get_tensor_model_parallel_rank,
|
||||
get_tensor_model_parallel_world_size,
|
||||
tensor_model_parallel_all_reduce)
|
||||
from vllm.model_executor.layers.fused_moe import fused_moe
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.layers.fused_moe import FusedMoE
|
||||
from vllm.model_executor.layers.linear import (QKVParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear)
|
||||
@ -22,7 +21,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.configs.dbrx import DbrxConfig
|
||||
|
||||
@ -54,13 +52,7 @@ class DbrxRouter(nn.Module):
|
||||
return router_logits
|
||||
|
||||
|
||||
class DbrxExperts(nn.Module):
|
||||
"""A tensor-parallel MoE implementation for DBRX.
|
||||
|
||||
Each expert's weights are sharded across all ranks and a fused MoE
|
||||
kernel is used for the forward pass, and finally we reduce the outputs
|
||||
across ranks.
|
||||
"""
|
||||
class DbrxExperts(FusedMoE):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -68,49 +60,24 @@ class DbrxExperts(nn.Module):
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
super().__init__()
|
||||
super().__init__(
|
||||
num_experts=config.ffn_config.moe_num_experts,
|
||||
top_k=config.ffn_config.moe_top_k,
|
||||
hidden_size=config.d_model,
|
||||
intermediate_size=config.ffn_config.ffn_hidden_size,
|
||||
params_dtype=params_dtype,
|
||||
reduce_results=True,
|
||||
renormalize=True,
|
||||
quant_config=quant_config,
|
||||
tp_size=get_tensor_model_parallel_world_size(),
|
||||
)
|
||||
self.config = config
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.num_total_experts = config.ffn_config.moe_num_experts
|
||||
self.top_k = config.ffn_config.moe_top_k
|
||||
self.d_model = config.d_model
|
||||
self.intermediate_size = (config.ffn_config.ffn_hidden_size //
|
||||
self.intermediate_size = (self.config.ffn_config.ffn_hidden_size //
|
||||
self.tp_size)
|
||||
|
||||
if params_dtype is None:
|
||||
params_dtype = torch.get_default_dtype()
|
||||
self.params_dtype = params_dtype
|
||||
|
||||
self.router = DbrxRouter(config, self.params_dtype)
|
||||
self.ws = nn.Parameter(
|
||||
torch.empty(
|
||||
self.num_total_experts,
|
||||
2 * self.intermediate_size,
|
||||
self.d_model,
|
||||
device="cuda",
|
||||
dtype=self.params_dtype,
|
||||
))
|
||||
self.w2s = nn.Parameter(
|
||||
torch.empty(
|
||||
self.num_total_experts,
|
||||
self.d_model,
|
||||
self.intermediate_size,
|
||||
device="cuda",
|
||||
dtype=self.params_dtype,
|
||||
))
|
||||
|
||||
set_weight_attrs(
|
||||
self.ws,
|
||||
{
|
||||
"weight_loader": self.weight_loader,
|
||||
},
|
||||
)
|
||||
set_weight_attrs(
|
||||
self.w2s,
|
||||
{
|
||||
"weight_loader": self.weight_loader,
|
||||
},
|
||||
)
|
||||
|
||||
# Define custom weight loader for dbrx model
|
||||
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
|
||||
weight_name: str):
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
@ -140,26 +107,40 @@ class DbrxExperts(nn.Module):
|
||||
).transpose(1, 2)
|
||||
param_data[:] = loaded_weight[:, :, shard]
|
||||
|
||||
|
||||
class DbrxMoE(nn.Module):
|
||||
"""A tensor-parallel MoE implementation for DBRX.
|
||||
|
||||
Each expert's weights are sharded across all ranks and a fused MoE
|
||||
kernel is used for the forward pass, and finally we reduce the outputs
|
||||
across ranks.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: DbrxConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.d_model = config.d_model
|
||||
if params_dtype is None:
|
||||
params_dtype = torch.get_default_dtype()
|
||||
self.params_dtype = params_dtype
|
||||
|
||||
self.router = DbrxRouter(config, self.params_dtype)
|
||||
|
||||
self.experts = DbrxExperts(config=config,
|
||||
quant_config=quant_config,
|
||||
params_dtype=self.params_dtype)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
num_tokens, hidden_size = hidden_states.shape
|
||||
orig_shape = hidden_states.shape
|
||||
hidden_states = hidden_states.view(-1, self.d_model)
|
||||
# router_logits: (num_tokens, n_experts)
|
||||
router_logits = self.router(hidden_states)
|
||||
final_hidden_states = fused_moe(
|
||||
hidden_states,
|
||||
self.ws,
|
||||
self.w2s,
|
||||
router_logits,
|
||||
self.top_k,
|
||||
renormalize=True,
|
||||
inplace=True,
|
||||
)
|
||||
|
||||
if self.tp_size > 1:
|
||||
final_hidden_states = tensor_model_parallel_all_reduce(
|
||||
final_hidden_states)
|
||||
|
||||
return final_hidden_states.view(num_tokens, hidden_size)
|
||||
final_hidden_states = self.experts(hidden_states, router_logits)
|
||||
return final_hidden_states.view(orig_shape)
|
||||
|
||||
|
||||
class DbrxAttention(nn.Module):
|
||||
@ -288,7 +269,7 @@ class DbrxBlock(nn.Module):
|
||||
super().__init__()
|
||||
self.norm_attn_norm = DbrxFusedNormAttention(config, cache_config,
|
||||
quant_config)
|
||||
self.ffn = DbrxExperts(config, quant_config)
|
||||
self.ffn = DbrxMoE(config, quant_config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -409,9 +390,10 @@ class DbrxForCausalLM(nn.Module):
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||||
|
||||
expert_params_mapping = [(
|
||||
"ws" if weight_name in ["w1", "v1"] else "w2s",
|
||||
f"experts.mlp.{weight_name}",
|
||||
"w13_weight" if weight_name in ["w1", "v1"] else "w2_weight",
|
||||
f"mlp.{weight_name}",
|
||||
) for weight_name in ["w1", "v1", "w2"]]
|
||||
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
||||
for name, loaded_weight in weights:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user