[dbrx] refactor dbrx experts to extend FusedMoe class (#8518)
This commit is contained in:
parent
ec4aaad812
commit
9dc7c6c7f3
@ -7,9 +7,8 @@ import torch.nn as nn
|
|||||||
from vllm.attention import Attention, AttentionMetadata
|
from vllm.attention import Attention, AttentionMetadata
|
||||||
from vllm.config import CacheConfig
|
from vllm.config import CacheConfig
|
||||||
from vllm.distributed import (get_tensor_model_parallel_rank,
|
from vllm.distributed import (get_tensor_model_parallel_rank,
|
||||||
get_tensor_model_parallel_world_size,
|
get_tensor_model_parallel_world_size)
|
||||||
tensor_model_parallel_all_reduce)
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
||||||
from vllm.model_executor.layers.fused_moe import fused_moe
|
|
||||||
from vllm.model_executor.layers.linear import (QKVParallelLinear,
|
from vllm.model_executor.layers.linear import (QKVParallelLinear,
|
||||||
ReplicatedLinear,
|
ReplicatedLinear,
|
||||||
RowParallelLinear)
|
RowParallelLinear)
|
||||||
@ -22,7 +21,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|||||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||||
from vllm.model_executor.utils import set_weight_attrs
|
|
||||||
from vllm.sequence import IntermediateTensors
|
from vllm.sequence import IntermediateTensors
|
||||||
from vllm.transformers_utils.configs.dbrx import DbrxConfig
|
from vllm.transformers_utils.configs.dbrx import DbrxConfig
|
||||||
|
|
||||||
@ -54,13 +52,7 @@ class DbrxRouter(nn.Module):
|
|||||||
return router_logits
|
return router_logits
|
||||||
|
|
||||||
|
|
||||||
class DbrxExperts(nn.Module):
|
class DbrxExperts(FusedMoE):
|
||||||
"""A tensor-parallel MoE implementation for DBRX.
|
|
||||||
|
|
||||||
Each expert's weights are sharded across all ranks and a fused MoE
|
|
||||||
kernel is used for the forward pass, and finally we reduce the outputs
|
|
||||||
across ranks.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@ -68,49 +60,24 @@ class DbrxExperts(nn.Module):
|
|||||||
quant_config: Optional[QuantizationConfig] = None,
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
params_dtype: Optional[torch.dtype] = None,
|
params_dtype: Optional[torch.dtype] = None,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__(
|
||||||
|
num_experts=config.ffn_config.moe_num_experts,
|
||||||
|
top_k=config.ffn_config.moe_top_k,
|
||||||
|
hidden_size=config.d_model,
|
||||||
|
intermediate_size=config.ffn_config.ffn_hidden_size,
|
||||||
|
params_dtype=params_dtype,
|
||||||
|
reduce_results=True,
|
||||||
|
renormalize=True,
|
||||||
|
quant_config=quant_config,
|
||||||
|
tp_size=get_tensor_model_parallel_world_size(),
|
||||||
|
)
|
||||||
|
self.config = config
|
||||||
self.tp_size = get_tensor_model_parallel_world_size()
|
self.tp_size = get_tensor_model_parallel_world_size()
|
||||||
self.num_total_experts = config.ffn_config.moe_num_experts
|
|
||||||
self.top_k = config.ffn_config.moe_top_k
|
|
||||||
self.d_model = config.d_model
|
self.d_model = config.d_model
|
||||||
self.intermediate_size = (config.ffn_config.ffn_hidden_size //
|
self.intermediate_size = (self.config.ffn_config.ffn_hidden_size //
|
||||||
self.tp_size)
|
self.tp_size)
|
||||||
|
|
||||||
if params_dtype is None:
|
# Define custom weight loader for dbrx model
|
||||||
params_dtype = torch.get_default_dtype()
|
|
||||||
self.params_dtype = params_dtype
|
|
||||||
|
|
||||||
self.router = DbrxRouter(config, self.params_dtype)
|
|
||||||
self.ws = nn.Parameter(
|
|
||||||
torch.empty(
|
|
||||||
self.num_total_experts,
|
|
||||||
2 * self.intermediate_size,
|
|
||||||
self.d_model,
|
|
||||||
device="cuda",
|
|
||||||
dtype=self.params_dtype,
|
|
||||||
))
|
|
||||||
self.w2s = nn.Parameter(
|
|
||||||
torch.empty(
|
|
||||||
self.num_total_experts,
|
|
||||||
self.d_model,
|
|
||||||
self.intermediate_size,
|
|
||||||
device="cuda",
|
|
||||||
dtype=self.params_dtype,
|
|
||||||
))
|
|
||||||
|
|
||||||
set_weight_attrs(
|
|
||||||
self.ws,
|
|
||||||
{
|
|
||||||
"weight_loader": self.weight_loader,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
set_weight_attrs(
|
|
||||||
self.w2s,
|
|
||||||
{
|
|
||||||
"weight_loader": self.weight_loader,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
|
|
||||||
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
|
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
|
||||||
weight_name: str):
|
weight_name: str):
|
||||||
tp_rank = get_tensor_model_parallel_rank()
|
tp_rank = get_tensor_model_parallel_rank()
|
||||||
@ -140,26 +107,40 @@ class DbrxExperts(nn.Module):
|
|||||||
).transpose(1, 2)
|
).transpose(1, 2)
|
||||||
param_data[:] = loaded_weight[:, :, shard]
|
param_data[:] = loaded_weight[:, :, shard]
|
||||||
|
|
||||||
|
|
||||||
|
class DbrxMoE(nn.Module):
|
||||||
|
"""A tensor-parallel MoE implementation for DBRX.
|
||||||
|
|
||||||
|
Each expert's weights are sharded across all ranks and a fused MoE
|
||||||
|
kernel is used for the forward pass, and finally we reduce the outputs
|
||||||
|
across ranks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: DbrxConfig,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
params_dtype: Optional[torch.dtype] = None,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.d_model = config.d_model
|
||||||
|
if params_dtype is None:
|
||||||
|
params_dtype = torch.get_default_dtype()
|
||||||
|
self.params_dtype = params_dtype
|
||||||
|
|
||||||
|
self.router = DbrxRouter(config, self.params_dtype)
|
||||||
|
|
||||||
|
self.experts = DbrxExperts(config=config,
|
||||||
|
quant_config=quant_config,
|
||||||
|
params_dtype=self.params_dtype)
|
||||||
|
|
||||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||||
num_tokens, hidden_size = hidden_states.shape
|
orig_shape = hidden_states.shape
|
||||||
hidden_states = hidden_states.view(-1, self.d_model)
|
hidden_states = hidden_states.view(-1, self.d_model)
|
||||||
# router_logits: (num_tokens, n_experts)
|
# router_logits: (num_tokens, n_experts)
|
||||||
router_logits = self.router(hidden_states)
|
router_logits = self.router(hidden_states)
|
||||||
final_hidden_states = fused_moe(
|
final_hidden_states = self.experts(hidden_states, router_logits)
|
||||||
hidden_states,
|
return final_hidden_states.view(orig_shape)
|
||||||
self.ws,
|
|
||||||
self.w2s,
|
|
||||||
router_logits,
|
|
||||||
self.top_k,
|
|
||||||
renormalize=True,
|
|
||||||
inplace=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.tp_size > 1:
|
|
||||||
final_hidden_states = tensor_model_parallel_all_reduce(
|
|
||||||
final_hidden_states)
|
|
||||||
|
|
||||||
return final_hidden_states.view(num_tokens, hidden_size)
|
|
||||||
|
|
||||||
|
|
||||||
class DbrxAttention(nn.Module):
|
class DbrxAttention(nn.Module):
|
||||||
@ -288,7 +269,7 @@ class DbrxBlock(nn.Module):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
self.norm_attn_norm = DbrxFusedNormAttention(config, cache_config,
|
self.norm_attn_norm = DbrxFusedNormAttention(config, cache_config,
|
||||||
quant_config)
|
quant_config)
|
||||||
self.ffn = DbrxExperts(config, quant_config)
|
self.ffn = DbrxMoE(config, quant_config)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
@ -409,9 +390,10 @@ class DbrxForCausalLM(nn.Module):
|
|||||||
return next_tokens
|
return next_tokens
|
||||||
|
|
||||||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||||||
|
|
||||||
expert_params_mapping = [(
|
expert_params_mapping = [(
|
||||||
"ws" if weight_name in ["w1", "v1"] else "w2s",
|
"w13_weight" if weight_name in ["w1", "v1"] else "w2_weight",
|
||||||
f"experts.mlp.{weight_name}",
|
f"mlp.{weight_name}",
|
||||||
) for weight_name in ["w1", "v1", "w2"]]
|
) for weight_name in ["w1", "v1", "w2"]]
|
||||||
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
||||||
for name, loaded_weight in weights:
|
for name, loaded_weight in weights:
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user