[Misc][VLM][Doc] Consolidate offline examples for vision language models (#6858)
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
This commit is contained in:
parent
593e79e733
commit
aa46953a20
@ -1,31 +0,0 @@
|
||||
import requests
|
||||
from PIL import Image
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
|
||||
def run_fuyu():
|
||||
llm = LLM(model="adept/fuyu-8b", max_model_len=4096)
|
||||
|
||||
# single-image prompt
|
||||
prompt = "What is the highest life expectancy at of male?\n"
|
||||
url = "https://huggingface.co/adept/fuyu-8b/resolve/main/chart.png"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
sampling_params = SamplingParams(temperature=0, max_tokens=64)
|
||||
|
||||
outputs = llm.generate(
|
||||
{
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
},
|
||||
},
|
||||
sampling_params=sampling_params)
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_fuyu()
|
||||
@ -1,25 +0,0 @@
|
||||
from vllm import LLM
|
||||
from vllm.assets.image import ImageAsset
|
||||
|
||||
|
||||
def run_llava():
|
||||
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
|
||||
|
||||
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
|
||||
|
||||
image = ImageAsset("stop_sign").pil_image
|
||||
|
||||
outputs = llm.generate({
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
},
|
||||
})
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_llava()
|
||||
@ -1,36 +0,0 @@
|
||||
from io import BytesIO
|
||||
|
||||
import requests
|
||||
from PIL import Image
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
|
||||
def run_llava_next():
|
||||
llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf", max_model_len=4096)
|
||||
|
||||
prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
|
||||
url = "https://h2o-release.s3.amazonaws.com/h2ogpt/bigben.jpg"
|
||||
image = Image.open(BytesIO(requests.get(url).content))
|
||||
sampling_params = SamplingParams(temperature=0.8,
|
||||
top_p=0.95,
|
||||
max_tokens=100)
|
||||
|
||||
outputs = llm.generate(
|
||||
{
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
}
|
||||
},
|
||||
sampling_params=sampling_params)
|
||||
|
||||
generated_text = ""
|
||||
for o in outputs:
|
||||
generated_text += o.outputs[0].text
|
||||
|
||||
print(f"LLM output:{generated_text}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_llava_next()
|
||||
@ -1,55 +0,0 @@
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.assets.image import ImageAsset
|
||||
|
||||
# 2.0
|
||||
# The official repo doesn't work yet, so we need to use a fork for now
|
||||
# For more details, please see: See: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630
|
||||
# MODEL_NAME = "HwwwH/MiniCPM-V-2"
|
||||
# 2.5
|
||||
MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5"
|
||||
|
||||
image = ImageAsset("stop_sign").pil_image.convert("RGB")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
||||
llm = LLM(model=MODEL_NAME,
|
||||
gpu_memory_utilization=1,
|
||||
trust_remote_code=True,
|
||||
max_model_len=4096)
|
||||
|
||||
messages = [{
|
||||
'role':
|
||||
'user',
|
||||
'content':
|
||||
'(<image>./</image>)\n' + "What's the content of the image?"
|
||||
}]
|
||||
prompt = tokenizer.apply_chat_template(messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True)
|
||||
# 2.0
|
||||
# stop_token_ids = [tokenizer.eos_id]
|
||||
# 2.5
|
||||
stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
stop_token_ids=stop_token_ids,
|
||||
# temperature=0.7,
|
||||
# top_p=0.8,
|
||||
# top_k=100,
|
||||
# seed=3472,
|
||||
max_tokens=1024,
|
||||
# min_tokens=150,
|
||||
temperature=0,
|
||||
use_beam_search=True,
|
||||
# length_penalty=1.2,
|
||||
best_of=3)
|
||||
|
||||
outputs = llm.generate({
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
}
|
||||
},
|
||||
sampling_params=sampling_params)
|
||||
print(outputs[0].outputs[0].text)
|
||||
174
examples/offline_inference_vision_language.py
Normal file
174
examples/offline_inference_vision_language.py
Normal file
@ -0,0 +1,174 @@
|
||||
"""
|
||||
This example shows how to use vLLM for running offline inference
|
||||
with the correct prompt format on vision language models.
|
||||
|
||||
For most models, the prompt format should follow corresponding examples
|
||||
on HuggingFace model repository.
|
||||
"""
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.assets.image import ImageAsset
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
# Input image and question
|
||||
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
|
||||
question = "What is the content of this image?"
|
||||
|
||||
|
||||
# LLaVA-1.5
|
||||
def run_llava(question):
|
||||
|
||||
prompt = f"USER: <image>\n{question}\nASSISTANT:"
|
||||
|
||||
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
|
||||
|
||||
return llm, prompt
|
||||
|
||||
|
||||
# LLaVA-1.6/LLaVA-NeXT
|
||||
def run_llava_next(question):
|
||||
|
||||
prompt = f"[INST] <image>\n{question} [/INST]"
|
||||
llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf")
|
||||
|
||||
return llm, prompt
|
||||
|
||||
|
||||
# Fuyu
|
||||
def run_fuyu(question):
|
||||
|
||||
prompt = f"{question}\n"
|
||||
llm = LLM(model="adept/fuyu-8b")
|
||||
|
||||
return llm, prompt
|
||||
|
||||
|
||||
# Phi-3-Vision
|
||||
def run_phi3v(question):
|
||||
|
||||
prompt = f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n" # noqa: E501
|
||||
# Note: The default setting of max_num_seqs (256) and
|
||||
# max_model_len (128k) for this model may cause OOM.
|
||||
# You may lower either to run this example on lower-end GPUs.
|
||||
|
||||
# In this example, we override max_num_seqs to 5 while
|
||||
# keeping the original context length of 128k.
|
||||
llm = LLM(
|
||||
model="microsoft/Phi-3-vision-128k-instruct",
|
||||
trust_remote_code=True,
|
||||
max_num_seqs=5,
|
||||
)
|
||||
return llm, prompt
|
||||
|
||||
|
||||
# PaliGemma
|
||||
def run_paligemma(question):
|
||||
|
||||
prompt = question
|
||||
llm = LLM(model="google/paligemma-3b-mix-224")
|
||||
|
||||
return llm, prompt
|
||||
|
||||
|
||||
# Chameleon
|
||||
def run_chameleon(question):
|
||||
|
||||
prompt = f"{question}<image>"
|
||||
llm = LLM(model="facebook/chameleon-7b")
|
||||
return llm, prompt
|
||||
|
||||
|
||||
# MiniCPM-V
|
||||
def run_minicpmv(question):
|
||||
|
||||
# 2.0
|
||||
# The official repo doesn't work yet, so we need to use a fork for now
|
||||
# For more details, please see: See: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630 # noqa
|
||||
# model_name = "HwwwH/MiniCPM-V-2"
|
||||
|
||||
# 2.5
|
||||
model_name = "openbmb/MiniCPM-Llama3-V-2_5"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
||||
trust_remote_code=True)
|
||||
llm = LLM(
|
||||
model=model_name,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
|
||||
messages = [{
|
||||
'role': 'user',
|
||||
'content': f'(<image>./</image>)\n{question}'
|
||||
}]
|
||||
prompt = tokenizer.apply_chat_template(messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True)
|
||||
return llm, prompt
|
||||
|
||||
|
||||
model_example_map = {
|
||||
"llava": run_llava,
|
||||
"llava-next": run_llava_next,
|
||||
"fuyu": run_fuyu,
|
||||
"phi3_v": run_phi3v,
|
||||
"paligemma": run_paligemma,
|
||||
"chameleon": run_chameleon,
|
||||
"minicpmv": run_minicpmv,
|
||||
}
|
||||
|
||||
|
||||
def main(args):
|
||||
model = args.model_type
|
||||
if model not in model_example_map:
|
||||
raise ValueError(f"Model type {model} is not supported.")
|
||||
|
||||
llm, prompt = model_example_map[model](question)
|
||||
|
||||
# We set temperature to 0.2 so that outputs can be different
|
||||
# even when all prompts are identical when running batch inference.
|
||||
sampling_params = SamplingParams(temperature=0.2, max_tokens=64)
|
||||
|
||||
assert args.num_prompts > 0
|
||||
if args.num_prompts == 1:
|
||||
# Single inference
|
||||
inputs = {
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
},
|
||||
}
|
||||
|
||||
else:
|
||||
# Batch inference
|
||||
inputs = [{
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
},
|
||||
} for _ in range(args.num_prompts)]
|
||||
|
||||
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = FlexibleArgumentParser(
|
||||
description='Demo on using vLLM for offline inference with '
|
||||
'vision language models')
|
||||
args = parser.parse_args()
|
||||
parser.add_argument('--model-type',
|
||||
'-m',
|
||||
type=str,
|
||||
default="llava",
|
||||
choices=model_example_map.keys(),
|
||||
help='Huggingface "model_type".')
|
||||
parser.add_argument('--num-prompts',
|
||||
type=int,
|
||||
default=1,
|
||||
help='Number of prompts to run.')
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
@ -1,25 +0,0 @@
|
||||
from vllm import LLM
|
||||
from vllm.assets.image import ImageAsset
|
||||
|
||||
|
||||
def run_paligemma():
|
||||
llm = LLM(model="google/paligemma-3b-mix-224")
|
||||
|
||||
prompt = "caption es"
|
||||
|
||||
image = ImageAsset("stop_sign").pil_image
|
||||
|
||||
outputs = llm.generate({
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
},
|
||||
})
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_paligemma()
|
||||
@ -1,40 +0,0 @@
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.assets.image import ImageAsset
|
||||
|
||||
|
||||
def run_phi3v():
|
||||
model_path = "microsoft/Phi-3-vision-128k-instruct"
|
||||
|
||||
# Note: The default setting of max_num_seqs (256) and
|
||||
# max_model_len (128k) for this model may cause OOM.
|
||||
# You may lower either to run this example on lower-end GPUs.
|
||||
|
||||
# In this example, we override max_num_seqs to 5 while
|
||||
# keeping the original context length of 128k.
|
||||
llm = LLM(
|
||||
model=model_path,
|
||||
trust_remote_code=True,
|
||||
max_num_seqs=5,
|
||||
)
|
||||
|
||||
image = ImageAsset("cherry_blossom").pil_image
|
||||
|
||||
# single-image prompt
|
||||
prompt = "<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n" # noqa: E501
|
||||
sampling_params = SamplingParams(temperature=0, max_tokens=64)
|
||||
|
||||
outputs = llm.generate(
|
||||
{
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
},
|
||||
},
|
||||
sampling_params=sampling_params)
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_phi3v()
|
||||
Loading…
Reference in New Issue
Block a user