[Misc][VLM][Doc] Consolidate offline examples for vision language models (#6858)

Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
This commit is contained in:
Roger Wang 2024-07-26 22:44:13 -07:00 committed by GitHub
parent 593e79e733
commit aa46953a20
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 174 additions and 212 deletions

View File

@ -1,31 +0,0 @@
import requests
from PIL import Image
from vllm import LLM, SamplingParams
def run_fuyu():
llm = LLM(model="adept/fuyu-8b", max_model_len=4096)
# single-image prompt
prompt = "What is the highest life expectancy at of male?\n"
url = "https://huggingface.co/adept/fuyu-8b/resolve/main/chart.png"
image = Image.open(requests.get(url, stream=True).raw)
sampling_params = SamplingParams(temperature=0, max_tokens=64)
outputs = llm.generate(
{
"prompt": prompt,
"multi_modal_data": {
"image": image
},
},
sampling_params=sampling_params)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
if __name__ == "__main__":
run_fuyu()

View File

@ -1,25 +0,0 @@
from vllm import LLM
from vllm.assets.image import ImageAsset
def run_llava():
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
image = ImageAsset("stop_sign").pil_image
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {
"image": image
},
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
if __name__ == "__main__":
run_llava()

View File

@ -1,36 +0,0 @@
from io import BytesIO
import requests
from PIL import Image
from vllm import LLM, SamplingParams
def run_llava_next():
llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf", max_model_len=4096)
prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
url = "https://h2o-release.s3.amazonaws.com/h2ogpt/bigben.jpg"
image = Image.open(BytesIO(requests.get(url).content))
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=100)
outputs = llm.generate(
{
"prompt": prompt,
"multi_modal_data": {
"image": image
}
},
sampling_params=sampling_params)
generated_text = ""
for o in outputs:
generated_text += o.outputs[0].text
print(f"LLM output:{generated_text}")
if __name__ == "__main__":
run_llava_next()

View File

@ -1,55 +0,0 @@
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
# 2.0
# The official repo doesn't work yet, so we need to use a fork for now
# For more details, please see: See: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630
# MODEL_NAME = "HwwwH/MiniCPM-V-2"
# 2.5
MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5"
image = ImageAsset("stop_sign").pil_image.convert("RGB")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
llm = LLM(model=MODEL_NAME,
gpu_memory_utilization=1,
trust_remote_code=True,
max_model_len=4096)
messages = [{
'role':
'user',
'content':
'(<image>./</image>)\n' + "What's the content of the image?"
}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
# 2.0
# stop_token_ids = [tokenizer.eos_id]
# 2.5
stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
sampling_params = SamplingParams(
stop_token_ids=stop_token_ids,
# temperature=0.7,
# top_p=0.8,
# top_k=100,
# seed=3472,
max_tokens=1024,
# min_tokens=150,
temperature=0,
use_beam_search=True,
# length_penalty=1.2,
best_of=3)
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {
"image": image
}
},
sampling_params=sampling_params)
print(outputs[0].outputs[0].text)

View File

@ -0,0 +1,174 @@
"""
This example shows how to use vLLM for running offline inference
with the correct prompt format on vision language models.
For most models, the prompt format should follow corresponding examples
on HuggingFace model repository.
"""
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from vllm.utils import FlexibleArgumentParser
# Input image and question
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
question = "What is the content of this image?"
# LLaVA-1.5
def run_llava(question):
prompt = f"USER: <image>\n{question}\nASSISTANT:"
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
return llm, prompt
# LLaVA-1.6/LLaVA-NeXT
def run_llava_next(question):
prompt = f"[INST] <image>\n{question} [/INST]"
llm = LLM(model="llava-hf/llava-v1.6-mistral-7b-hf")
return llm, prompt
# Fuyu
def run_fuyu(question):
prompt = f"{question}\n"
llm = LLM(model="adept/fuyu-8b")
return llm, prompt
# Phi-3-Vision
def run_phi3v(question):
prompt = f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n" # noqa: E501
# Note: The default setting of max_num_seqs (256) and
# max_model_len (128k) for this model may cause OOM.
# You may lower either to run this example on lower-end GPUs.
# In this example, we override max_num_seqs to 5 while
# keeping the original context length of 128k.
llm = LLM(
model="microsoft/Phi-3-vision-128k-instruct",
trust_remote_code=True,
max_num_seqs=5,
)
return llm, prompt
# PaliGemma
def run_paligemma(question):
prompt = question
llm = LLM(model="google/paligemma-3b-mix-224")
return llm, prompt
# Chameleon
def run_chameleon(question):
prompt = f"{question}<image>"
llm = LLM(model="facebook/chameleon-7b")
return llm, prompt
# MiniCPM-V
def run_minicpmv(question):
# 2.0
# The official repo doesn't work yet, so we need to use a fork for now
# For more details, please see: See: https://github.com/vllm-project/vllm/pull/4087#issuecomment-2250397630 # noqa
# model_name = "HwwwH/MiniCPM-V-2"
# 2.5
model_name = "openbmb/MiniCPM-Llama3-V-2_5"
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
llm = LLM(
model=model_name,
trust_remote_code=True,
)
messages = [{
'role': 'user',
'content': f'(<image>./</image>)\n{question}'
}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
return llm, prompt
model_example_map = {
"llava": run_llava,
"llava-next": run_llava_next,
"fuyu": run_fuyu,
"phi3_v": run_phi3v,
"paligemma": run_paligemma,
"chameleon": run_chameleon,
"minicpmv": run_minicpmv,
}
def main(args):
model = args.model_type
if model not in model_example_map:
raise ValueError(f"Model type {model} is not supported.")
llm, prompt = model_example_map[model](question)
# We set temperature to 0.2 so that outputs can be different
# even when all prompts are identical when running batch inference.
sampling_params = SamplingParams(temperature=0.2, max_tokens=64)
assert args.num_prompts > 0
if args.num_prompts == 1:
# Single inference
inputs = {
"prompt": prompt,
"multi_modal_data": {
"image": image
},
}
else:
# Batch inference
inputs = [{
"prompt": prompt,
"multi_modal_data": {
"image": image
},
} for _ in range(args.num_prompts)]
outputs = llm.generate(inputs, sampling_params=sampling_params)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Demo on using vLLM for offline inference with '
'vision language models')
args = parser.parse_args()
parser.add_argument('--model-type',
'-m',
type=str,
default="llava",
choices=model_example_map.keys(),
help='Huggingface "model_type".')
parser.add_argument('--num-prompts',
type=int,
default=1,
help='Number of prompts to run.')
args = parser.parse_args()
main(args)

View File

@ -1,25 +0,0 @@
from vllm import LLM
from vllm.assets.image import ImageAsset
def run_paligemma():
llm = LLM(model="google/paligemma-3b-mix-224")
prompt = "caption es"
image = ImageAsset("stop_sign").pil_image
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {
"image": image
},
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
if __name__ == "__main__":
run_paligemma()

View File

@ -1,40 +0,0 @@
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
def run_phi3v():
model_path = "microsoft/Phi-3-vision-128k-instruct"
# Note: The default setting of max_num_seqs (256) and
# max_model_len (128k) for this model may cause OOM.
# You may lower either to run this example on lower-end GPUs.
# In this example, we override max_num_seqs to 5 while
# keeping the original context length of 128k.
llm = LLM(
model=model_path,
trust_remote_code=True,
max_num_seqs=5,
)
image = ImageAsset("cherry_blossom").pil_image
# single-image prompt
prompt = "<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n" # noqa: E501
sampling_params = SamplingParams(temperature=0, max_tokens=64)
outputs = llm.generate(
{
"prompt": prompt,
"multi_modal_data": {
"image": image
},
},
sampling_params=sampling_params)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
if __name__ == "__main__":
run_phi3v()