[Misc] Remove vLLM patch of BaichuanTokenizer (#8921)
This commit is contained in:
parent
260024a374
commit
b0298aa8cc
@ -11,8 +11,7 @@ from transformers import (AutoTokenizer, PreTrainedTokenizer,
|
|||||||
from vllm.envs import VLLM_USE_MODELSCOPE
|
from vllm.envs import VLLM_USE_MODELSCOPE
|
||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
from vllm.lora.request import LoRARequest
|
from vllm.lora.request import LoRARequest
|
||||||
from vllm.transformers_utils.tokenizers import (BaichuanTokenizer,
|
from vllm.transformers_utils.tokenizers import MistralTokenizer
|
||||||
MistralTokenizer)
|
|
||||||
from vllm.transformers_utils.utils import check_gguf_file
|
from vllm.transformers_utils.utils import check_gguf_file
|
||||||
from vllm.utils import make_async
|
from vllm.utils import make_async
|
||||||
|
|
||||||
@ -139,19 +138,6 @@ def get_tokenizer(
|
|||||||
raise RuntimeError(err_msg) from e
|
raise RuntimeError(err_msg) from e
|
||||||
else:
|
else:
|
||||||
raise e
|
raise e
|
||||||
except AttributeError as e:
|
|
||||||
if "BaichuanTokenizer" in str(e):
|
|
||||||
# This is for the error "'BaichuanTokenizer' object has no
|
|
||||||
# attribute 'sp_model'".
|
|
||||||
tokenizer = BaichuanTokenizer.from_pretrained(
|
|
||||||
tokenizer_name,
|
|
||||||
*args,
|
|
||||||
trust_remote_code=trust_remote_code,
|
|
||||||
revision=revision,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise e
|
|
||||||
|
|
||||||
# NOTE: We can remove this after https://github.com/THUDM/ChatGLM3/issues/1324
|
# NOTE: We can remove this after https://github.com/THUDM/ChatGLM3/issues/1324
|
||||||
if type(tokenizer).__name__ in ("ChatGLMTokenizer",
|
if type(tokenizer).__name__ in ("ChatGLMTokenizer",
|
||||||
|
|||||||
@ -1,4 +1,3 @@
|
|||||||
from vllm.transformers_utils.tokenizers.baichuan import BaichuanTokenizer
|
from .mistral import MistralTokenizer
|
||||||
from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer
|
|
||||||
|
|
||||||
__all__ = ["BaichuanTokenizer", "MistralTokenizer"]
|
__all__ = ["MistralTokenizer"]
|
||||||
|
|||||||
@ -1,255 +0,0 @@
|
|||||||
# Adapted from
|
|
||||||
# https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/8f6e343d545c503b91429582231d1d354dac2740/tokenization_baichuan.py
|
|
||||||
# This includes a fix suggested in
|
|
||||||
# https://github.com/vllm-project/vllm/issues/1403#issuecomment-1767503058
|
|
||||||
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
|
||||||
|
|
||||||
import os
|
|
||||||
from shutil import copyfile
|
|
||||||
from typing import Any, Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
|
||||||
from transformers.utils import logging
|
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
|
||||||
|
|
||||||
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
|
||||||
|
|
||||||
PRETRAINED_VOCAB_FILES_MAP = { # type: ignore
|
|
||||||
"vocab_file": {},
|
|
||||||
"tokenizer_file": {},
|
|
||||||
}
|
|
||||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {} # type: ignore
|
|
||||||
|
|
||||||
|
|
||||||
class BaichuanTokenizer(PreTrainedTokenizer):
|
|
||||||
"""
|
|
||||||
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
vocab_file (`str`):
|
|
||||||
Path to the vocabulary file.
|
|
||||||
"""
|
|
||||||
|
|
||||||
vocab_files_names = VOCAB_FILES_NAMES
|
|
||||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
|
||||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
|
||||||
model_input_names = ["input_ids", "attention_mask"]
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
vocab_file,
|
|
||||||
unk_token="<unk>",
|
|
||||||
bos_token="<s>",
|
|
||||||
eos_token="</s>",
|
|
||||||
pad_token=None,
|
|
||||||
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
|
||||||
add_bos_token=True,
|
|
||||||
add_eos_token=False,
|
|
||||||
clean_up_tokenization_spaces=False,
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
self.sp_model_kwargs = ({} if sp_model_kwargs is None else
|
|
||||||
sp_model_kwargs)
|
|
||||||
bos_token = (AddedToken(bos_token, lstrip=False, rstrip=False)
|
|
||||||
if isinstance(bos_token, str) else bos_token)
|
|
||||||
eos_token = (AddedToken(eos_token, lstrip=False, rstrip=False)
|
|
||||||
if isinstance(eos_token, str) else eos_token)
|
|
||||||
unk_token = (AddedToken(unk_token, lstrip=False, rstrip=False)
|
|
||||||
if isinstance(unk_token, str) else unk_token)
|
|
||||||
pad_token = (AddedToken(pad_token, lstrip=False, rstrip=False)
|
|
||||||
if isinstance(pad_token, str) else pad_token)
|
|
||||||
self.vocab_file = vocab_file
|
|
||||||
self.add_bos_token = add_bos_token
|
|
||||||
self.add_eos_token = add_eos_token
|
|
||||||
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
|
||||||
self.sp_model.Load(vocab_file)
|
|
||||||
super().__init__(
|
|
||||||
bos_token=bos_token,
|
|
||||||
eos_token=eos_token,
|
|
||||||
unk_token=unk_token,
|
|
||||||
pad_token=pad_token,
|
|
||||||
add_bos_token=add_bos_token,
|
|
||||||
add_eos_token=add_eos_token,
|
|
||||||
sp_model_kwargs=self.sp_model_kwargs,
|
|
||||||
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
def __getstate__(self):
|
|
||||||
state = self.__dict__.copy()
|
|
||||||
state["sp_model"] = None
|
|
||||||
return state
|
|
||||||
|
|
||||||
def __setstate__(self, d):
|
|
||||||
self.__dict__ = d
|
|
||||||
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
|
||||||
self.sp_model.Load(self.vocab_file)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def vocab_size(self):
|
|
||||||
"""Returns vocab size"""
|
|
||||||
return self.sp_model.get_piece_size()
|
|
||||||
|
|
||||||
def get_vocab(self):
|
|
||||||
"""Returns vocab as a dict"""
|
|
||||||
vocab = {
|
|
||||||
self.convert_ids_to_tokens(i): i
|
|
||||||
for i in range(self.vocab_size)
|
|
||||||
}
|
|
||||||
vocab.update(self.added_tokens_encoder)
|
|
||||||
return vocab
|
|
||||||
|
|
||||||
def _tokenize(self, text):
|
|
||||||
"""Returns a tokenized string."""
|
|
||||||
return self.sp_model.encode(text, out_type=str)
|
|
||||||
|
|
||||||
def _convert_token_to_id(self, token):
|
|
||||||
"""Converts a token (str) in an id using the vocab."""
|
|
||||||
return self.sp_model.piece_to_id(token)
|
|
||||||
|
|
||||||
def _convert_id_to_token(self, index):
|
|
||||||
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
||||||
token = self.sp_model.IdToPiece(index)
|
|
||||||
return token
|
|
||||||
|
|
||||||
def convert_tokens_to_string(self, tokens: List[str]):
|
|
||||||
"""Converts a sequence of tokens (string) in a single string."""
|
|
||||||
current_sub_tokens: List[str] = []
|
|
||||||
out_string = ""
|
|
||||||
prev_is_special = False
|
|
||||||
for i, token in enumerate(tokens):
|
|
||||||
# make sure that special tokens are not decoded using
|
|
||||||
# sentencepiece model
|
|
||||||
if token in self.all_special_tokens:
|
|
||||||
if not prev_is_special and i != 0:
|
|
||||||
out_string += " "
|
|
||||||
out_string += self.sp_model.decode(current_sub_tokens) + token
|
|
||||||
prev_is_special = True
|
|
||||||
current_sub_tokens = []
|
|
||||||
else:
|
|
||||||
current_sub_tokens.append(token)
|
|
||||||
prev_is_special = False
|
|
||||||
out_string += self.sp_model.decode(current_sub_tokens)
|
|
||||||
return out_string
|
|
||||||
|
|
||||||
def save_vocabulary(self,
|
|
||||||
save_directory,
|
|
||||||
filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
||||||
"""
|
|
||||||
Save the vocabulary and special tokens file to a directory.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
save_directory (`str`):
|
|
||||||
The directory in which to save the vocabulary.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
`Tuple(str)`: Paths to the files saved.
|
|
||||||
"""
|
|
||||||
if not os.path.isdir(save_directory):
|
|
||||||
raise ValueError(f"Vocabulary path ({save_directory}) "
|
|
||||||
"should be a directory")
|
|
||||||
|
|
||||||
out_vocab_file = os.path.join(
|
|
||||||
save_directory,
|
|
||||||
(filename_prefix + "-" if filename_prefix else "") +
|
|
||||||
VOCAB_FILES_NAMES["vocab_file"],
|
|
||||||
)
|
|
||||||
|
|
||||||
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
|
||||||
out_vocab_file) and os.path.isfile(self.vocab_file):
|
|
||||||
copyfile(self.vocab_file, out_vocab_file)
|
|
||||||
elif not os.path.isfile(self.vocab_file):
|
|
||||||
with open(out_vocab_file, "wb") as fi:
|
|
||||||
content_spiece_model = self.sp_model.serialized_model_proto()
|
|
||||||
fi.write(content_spiece_model)
|
|
||||||
|
|
||||||
return (out_vocab_file, )
|
|
||||||
|
|
||||||
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
|
||||||
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
|
||||||
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
|
||||||
|
|
||||||
output = bos_token_id + token_ids_0 + eos_token_id
|
|
||||||
|
|
||||||
if token_ids_1 is not None:
|
|
||||||
output = output + bos_token_id + token_ids_1 + eos_token_id
|
|
||||||
|
|
||||||
return output
|
|
||||||
|
|
||||||
def get_special_tokens_mask(
|
|
||||||
self,
|
|
||||||
token_ids_0: List[int],
|
|
||||||
token_ids_1: Optional[List[int]] = None,
|
|
||||||
already_has_special_tokens: bool = False,
|
|
||||||
) -> List[int]:
|
|
||||||
"""
|
|
||||||
Retrieve sequence ids from a token list that has no special tokens
|
|
||||||
added. This method is called when adding
|
|
||||||
special tokens using the tokenizer `prepare_for_model` method.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
token_ids_0 (`List[int]`):
|
|
||||||
List of IDs.
|
|
||||||
token_ids_1 (`List[int]`, *optional*):
|
|
||||||
Optional second list of IDs for sequence pairs.
|
|
||||||
already_has_special_tokens (`bool`, *optional*, defaults to
|
|
||||||
`False`):
|
|
||||||
Whether or not the token list is already formatted with
|
|
||||||
special tokens for the model.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
`List[int]`: A list of integers in the range [0, 1]:
|
|
||||||
1 for a special token, 0 for a sequence token.
|
|
||||||
"""
|
|
||||||
if already_has_special_tokens:
|
|
||||||
return super().get_special_tokens_mask(
|
|
||||||
token_ids_0=token_ids_0,
|
|
||||||
token_ids_1=token_ids_1,
|
|
||||||
already_has_special_tokens=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
bos_token_id = [1] if self.add_bos_token else []
|
|
||||||
eos_token_id = [1] if self.add_eos_token else []
|
|
||||||
|
|
||||||
if token_ids_1 is None:
|
|
||||||
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
|
||||||
return (bos_token_id + ([0] * len(token_ids_0)) + eos_token_id +
|
|
||||||
bos_token_id + ([0] * len(token_ids_1)) + eos_token_id)
|
|
||||||
|
|
||||||
def create_token_type_ids_from_sequences(
|
|
||||||
self,
|
|
||||||
token_ids_0: List[int],
|
|
||||||
token_ids_1: Optional[List[int]] = None) -> List[int]:
|
|
||||||
"""
|
|
||||||
Creates a mask from the two sequences passed to be used in a
|
|
||||||
sequence-pair classification task. An ALBERT
|
|
||||||
sequence pair mask has the following format:
|
|
||||||
|
|
||||||
```
|
|
||||||
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
|
||||||
| first sequence | second sequence |
|
|
||||||
```
|
|
||||||
|
|
||||||
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
|
||||||
|
|
||||||
Args:
|
|
||||||
token_ids_0 (`List[int]`):
|
|
||||||
List of ids.
|
|
||||||
token_ids_1 (`List[int]`, *optional*):
|
|
||||||
Optional second list of IDs for sequence pairs.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
`List[int]`: List of [token type IDs](../glossary#token-type-ids)
|
|
||||||
according to the given sequence(s).
|
|
||||||
"""
|
|
||||||
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
|
||||||
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
|
||||||
|
|
||||||
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
|
||||||
|
|
||||||
if token_ids_1 is not None:
|
|
||||||
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
|
||||||
|
|
||||||
return output
|
|
||||||
Loading…
Reference in New Issue
Block a user