Add greedy sampler
This commit is contained in:
parent
343cea3dbc
commit
b56b6ca0d6
45
cacheflow/models/sample.py
Normal file
45
cacheflow/models/sample.py
Normal file
@ -0,0 +1,45 @@
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from cacheflow.models import InputMetadata
|
||||
|
||||
|
||||
class Sampler(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding: torch.Tensor,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.embedding = embedding.t() # [hidden_size, vocab_size]
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
input_metadata: InputMetadata,
|
||||
) -> Dict[int, Tuple[int, int]]:
|
||||
# Get the hidden states of the last tokens.
|
||||
start_idx = 0
|
||||
last_token_indicies: List[int] = []
|
||||
for prompt_len in input_metadata.prompt_lens:
|
||||
last_token_indicies.append(start_idx + prompt_len - 1)
|
||||
start_idx += prompt_len
|
||||
last_token_indicies.extend(
|
||||
range(start_idx, start_idx + input_metadata.num_generation_tokens))
|
||||
hidden_states = hidden_states[last_token_indicies]
|
||||
|
||||
# Get the logits for the next tokens.
|
||||
logits = torch.matmul(hidden_states, self.embedding)
|
||||
|
||||
# Sample the next tokens.
|
||||
# TODO(woosuk): Implement other sampling methods.
|
||||
next_token_ids = torch.argmax(logits, dim=-1)
|
||||
next_token_ids = next_token_ids.tolist()
|
||||
|
||||
# Return the next tokens.
|
||||
next_tokens: Dict[int, Tuple[int, int]] = {}
|
||||
for seq_id, token_id in zip(input_metadata.seq_ids, next_token_ids):
|
||||
next_tokens[seq_id] = (seq_id, token_id)
|
||||
return next_tokens
|
||||
Loading…
Reference in New Issue
Block a user