Support Deepseek-V2 (#4650)
Co-authored-by: Philipp Moritz <pcmoritz@gmail.com>
This commit is contained in:
parent
2cd402e169
commit
be0b3af9e0
@ -297,6 +297,12 @@ class ModelConfig:
|
||||
return self.hf_text_config.hidden_size
|
||||
|
||||
def get_head_size(self) -> int:
|
||||
# TODO remove hard code
|
||||
if hasattr(self.hf_text_config, "model_type"
|
||||
) and self.hf_text_config.model_type == 'deepseek_v2':
|
||||
# FlashAttention supports only head_size 32, 64, 128, 256,
|
||||
# we need to pad head_size 192 to 256
|
||||
return 256
|
||||
if hasattr(self.hf_text_config, "head_dim"):
|
||||
return self.hf_text_config.head_dim
|
||||
# FIXME(woosuk): This may not be true for all models.
|
||||
|
||||
@ -1,9 +1,10 @@
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
||||
fused_experts, fused_moe, fused_topk, get_config_file_name)
|
||||
fused_experts, fused_moe, fused_topk, get_config_file_name, grouped_topk)
|
||||
|
||||
__all__ = [
|
||||
"fused_moe",
|
||||
"fused_topk",
|
||||
"fused_experts",
|
||||
"get_config_file_name",
|
||||
"grouped_topk",
|
||||
]
|
||||
|
||||
@ -367,6 +367,37 @@ def fused_topk(
|
||||
return topk_weights, topk_ids
|
||||
|
||||
|
||||
# This is used by the Deepseek-V2 model
|
||||
def grouped_topk(
|
||||
hidden_states: torch.Tensor,
|
||||
gating_output: torch.Tensor,
|
||||
topk: int,
|
||||
renormalize: bool,
|
||||
num_expert_group: int = 0,
|
||||
topk_group: int = 0,
|
||||
):
|
||||
scores = torch.softmax(gating_output, dim=-1)
|
||||
num_token = scores.shape[0]
|
||||
group_scores = scores.view(num_token, num_expert_group,
|
||||
-1).max(dim=-1).values # [n, n_group]
|
||||
group_idx = torch.topk(group_scores, k=topk_group, dim=-1,
|
||||
sorted=False)[1] # [n, top_k_group]
|
||||
group_mask = torch.zeros_like(group_scores) # [n, n_group]
|
||||
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
|
||||
score_mask = group_mask.unsqueeze(-1).expand(
|
||||
num_token, num_expert_group,
|
||||
scores.shape[-1] // num_expert_group).reshape(num_token, -1) # [n, e]
|
||||
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
|
||||
topk_weights, topk_ids = torch.topk(tmp_scores,
|
||||
k=topk,
|
||||
dim=-1,
|
||||
sorted=False)
|
||||
|
||||
if renormalize:
|
||||
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
|
||||
return topk_weights, topk_ids
|
||||
|
||||
|
||||
def fused_experts(hidden_states: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
|
||||
@ -610,6 +610,119 @@ class Phi3LongRoPEScaledRotaryEmbedding(nn.Module):
|
||||
return query.flatten(-2), key.flatten(-2)
|
||||
|
||||
|
||||
def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
|
||||
if scale <= 1:
|
||||
return 1.0
|
||||
return 0.1 * mscale * math.log(scale) + 1.0
|
||||
|
||||
|
||||
class DeepseekScalingRotaryEmbedding(RotaryEmbedding):
|
||||
"""RotaryEmbedding extended with YaRN method.
|
||||
|
||||
Credits to Peng et al. github.com/jquesnelle/yarn
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
base: int,
|
||||
is_neox_style: bool,
|
||||
scaling_factor: float,
|
||||
dtype: torch.dtype,
|
||||
*,
|
||||
extrapolation_factor: float = 1,
|
||||
attn_factor: float = 1,
|
||||
beta_fast: int = 32,
|
||||
beta_slow: int = 1,
|
||||
mscale: float = 1,
|
||||
mscale_all_dim: float = 0,
|
||||
) -> None:
|
||||
self.scaling_factor = scaling_factor
|
||||
self.extrapolation_factor = extrapolation_factor
|
||||
self.attn_factor = attn_factor
|
||||
self.beta_fast = beta_fast
|
||||
self.beta_slow = beta_slow
|
||||
# Get n-d magnitude scaling corrected for interpolation.
|
||||
self.mscale = float(
|
||||
yarn_get_mscale(self.scaling_factor, float(mscale)) /
|
||||
yarn_get_mscale(self.scaling_factor, float(mscale_all_dim)) *
|
||||
attn_factor)
|
||||
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
||||
is_neox_style, dtype)
|
||||
|
||||
def _compute_inv_freq(self, scaling_factor: float) -> torch.Tensor:
|
||||
pos_freqs = self.base**(torch.arange(
|
||||
0, self.rotary_dim, 2, dtype=torch.float, device="cuda") /
|
||||
self.rotary_dim)
|
||||
inv_freq_extrapolation = 1.0 / pos_freqs
|
||||
inv_freq_interpolation = 1.0 / (scaling_factor * pos_freqs)
|
||||
|
||||
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow,
|
||||
self.rotary_dim, self.base,
|
||||
self.max_position_embeddings)
|
||||
# Get n-d rotational scaling corrected for extrapolation
|
||||
inv_freq_mask = (1 - _yarn_linear_ramp_mask(
|
||||
low, high, self.rotary_dim // 2,
|
||||
dtype=torch.float)) * self.extrapolation_factor
|
||||
inv_freq = inv_freq_interpolation * (
|
||||
1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
||||
return inv_freq
|
||||
|
||||
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
||||
inv_freq = self._compute_inv_freq(self.scaling_factor)
|
||||
t = torch.arange(self.max_position_embeddings * self.scaling_factor,
|
||||
device="cuda",
|
||||
dtype=torch.float32)
|
||||
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
||||
cos = (freqs.cos() * self.mscale)
|
||||
sin = (freqs.sin() * self.mscale)
|
||||
cache = torch.cat((cos, sin), dim=-1)
|
||||
print("Cache shape", cache.shape)
|
||||
return cache
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
offsets: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""PyTorch-native implementation equivalent to forward()."""
|
||||
query_rot = query[..., :self.rotary_dim]
|
||||
key_rot = key[..., :self.rotary_dim]
|
||||
if self.rotary_dim < self.head_size:
|
||||
query_pass = query[..., self.rotary_dim:]
|
||||
key_pass = key[..., self.rotary_dim:]
|
||||
|
||||
self.cos_sin_cache: torch.Tensor = self.cos_sin_cache.to(
|
||||
positions.device)
|
||||
cos_sin = self.cos_sin_cache[torch.add(positions, offsets)
|
||||
if offsets is not None else positions]
|
||||
cos, sin = cos_sin.chunk(2, dim=-1)
|
||||
if self.is_neox_style:
|
||||
# NOTE(woosuk): Here we assume that the positions tensor has the
|
||||
# shape [batch_size, seq_len].
|
||||
cos = cos.repeat(1, 1, 2).unsqueeze(-2)
|
||||
sin = sin.repeat(1, 1, 2).unsqueeze(-2)
|
||||
else:
|
||||
cos = cos.repeat_interleave(2, dim=-1).unsqueeze(-2)
|
||||
sin = sin.repeat_interleave(2, dim=-1).unsqueeze(-2)
|
||||
|
||||
rotate_fn = _rotate_neox if self.is_neox_style else _rotate_gptj
|
||||
query_rot = query_rot * cos + rotate_fn(query_rot) * sin
|
||||
key_rot = key_rot * cos + rotate_fn(key_rot) * sin
|
||||
|
||||
if self.rotary_dim < self.head_size:
|
||||
query = torch.cat((query_rot, query_pass), dim=-1)
|
||||
key = torch.cat((key_rot, key_pass), dim=-1)
|
||||
else:
|
||||
query = query_rot
|
||||
key = key_rot
|
||||
return query, key
|
||||
|
||||
|
||||
class GemmaRotaryEmbedding(RotaryEmbedding):
|
||||
|
||||
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
|
||||
@ -679,6 +792,19 @@ def get_rope(
|
||||
base, is_neox_style,
|
||||
scaling_factor, dtype,
|
||||
**extra_kwargs)
|
||||
elif scaling_type == "deepseek_yarn":
|
||||
original_max_position = rope_scaling[
|
||||
"original_max_position_embeddings"]
|
||||
# assert max_position == original_max_position * scaling_factor
|
||||
extra_kwargs = {
|
||||
k: v
|
||||
for k, v in rope_scaling.items()
|
||||
if k in ("extrapolation_factor", "attn_factor", "beta_fast",
|
||||
"beta_slow", "mscale", "mscale_all_dim")
|
||||
}
|
||||
rotary_emb = DeepseekScalingRotaryEmbedding(
|
||||
head_size, rotary_dim, original_max_position, base,
|
||||
is_neox_style, scaling_factor, dtype, **extra_kwargs)
|
||||
# The correct one should be "longrope" but keep "su" here
|
||||
# for backward compatible
|
||||
elif scaling_type == "su" or scaling_type == "longrope":
|
||||
|
||||
@ -21,6 +21,7 @@ _GENERATION_MODELS = {
|
||||
"DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"),
|
||||
"DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"),
|
||||
"DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"),
|
||||
"DeepseekV2ForCausalLM": ("deepseek_v2", "DeepseekV2ForCausalLM"),
|
||||
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
|
||||
"GemmaForCausalLM": ("gemma", "GemmaForCausalLM"),
|
||||
"Gemma2ForCausalLM": ("gemma2", "Gemma2ForCausalLM"),
|
||||
|
||||
534
vllm/model_executor/models/deepseek_v2.py
Normal file
534
vllm/model_executor/models/deepseek_v2.py
Normal file
@ -0,0 +1,534 @@
|
||||
# coding=utf-8
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only DeepseekV2 model."""
|
||||
from typing import Any, Dict, Iterable, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.config import CacheConfig
|
||||
from vllm.distributed import (get_tensor_model_parallel_rank,
|
||||
get_tensor_model_parallel_world_size,
|
||||
tensor_model_parallel_all_reduce)
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.fused_moe import fused_experts, grouped_topk
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
MergedColumnParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import SamplerOutput
|
||||
|
||||
|
||||
class DeepseekV2MLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
reduce_results: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
hidden_size, [intermediate_size] * 2,
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
self.down_proj = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
reduce_results=reduce_results)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class DeepseekV2MoE(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.rank = get_tensor_model_parallel_rank()
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.n_routed_experts = config.n_routed_experts
|
||||
self.top_k = config.num_experts_per_tok
|
||||
self.routed_scaling_factor = config.routed_scaling_factor
|
||||
if self.tp_size > self.n_routed_experts:
|
||||
raise ValueError(
|
||||
f"Tensor parallel size {self.tp_size} is greater than "
|
||||
f"the number of experts {self.n_routed_experts}.")
|
||||
|
||||
self.experts = nn.ModuleList([
|
||||
DeepseekV2MLP(hidden_size=config.hidden_size,
|
||||
intermediate_size=config.moe_intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
reduce_results=False)
|
||||
for idx in range(self.n_routed_experts)
|
||||
])
|
||||
self.pack_params()
|
||||
|
||||
self.gate = ReplicatedLinear(config.hidden_size,
|
||||
self.n_routed_experts,
|
||||
bias=False,
|
||||
quant_config=None)
|
||||
|
||||
if config.n_shared_experts is not None:
|
||||
intermediate_size = (config.moe_intermediate_size *
|
||||
config.n_shared_experts)
|
||||
self.shared_experts = DeepseekV2MLP(
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
reduce_results=False,
|
||||
)
|
||||
|
||||
def pack_params(self):
|
||||
w1 = []
|
||||
w2 = []
|
||||
for expert in self.experts:
|
||||
w1.append(expert.gate_up_proj.weight)
|
||||
w2.append(expert.down_proj.weight)
|
||||
self.w1 = torch._utils._flatten_dense_tensors(w1)
|
||||
w1s = torch._utils._unflatten_dense_tensors(self.w1, w1)
|
||||
for data, param in zip(w1s, w1):
|
||||
param.data = data
|
||||
self.w1 = self.w1.view(len(w1), *w1s[0].shape)
|
||||
|
||||
self.w2 = torch._utils._flatten_dense_tensors(w2)
|
||||
w2s = torch._utils._unflatten_dense_tensors(self.w2, w2)
|
||||
for data, param in zip(w2s, w2):
|
||||
param.data = data
|
||||
|
||||
self.w2 = self.w2.view(len(w2), *w2s[0].shape)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
num_tokens, hidden_dim = hidden_states.shape
|
||||
hidden_states = hidden_states.view(-1, hidden_dim)
|
||||
if self.config.n_shared_experts is not None:
|
||||
shared_output = self.shared_experts(hidden_states)
|
||||
# router_logits: (num_tokens, n_experts)
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
topk_weights, topk_ids = grouped_topk(
|
||||
hidden_states,
|
||||
router_logits,
|
||||
self.top_k,
|
||||
renormalize=self.config.norm_topk_prob,
|
||||
num_expert_group=self.config.n_group,
|
||||
topk_group=self.config.topk_group)
|
||||
final_hidden_states = fused_experts(
|
||||
hidden_states,
|
||||
self.w1,
|
||||
self.w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
inplace=True) * self.routed_scaling_factor
|
||||
if self.config.n_shared_experts is not None:
|
||||
final_hidden_states = final_hidden_states + shared_output
|
||||
final_hidden_states = tensor_model_parallel_all_reduce(
|
||||
final_hidden_states)
|
||||
|
||||
return final_hidden_states.view(num_tokens, hidden_dim)
|
||||
|
||||
|
||||
def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
|
||||
import math
|
||||
if scale <= 1:
|
||||
return 1.0
|
||||
return 0.1 * mscale * math.log(scale) + 1.0
|
||||
|
||||
|
||||
class DeepseekV2Attention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
qk_nope_head_dim: int,
|
||||
qk_rope_head_dim: int,
|
||||
v_head_dim: int,
|
||||
q_lora_rank: int,
|
||||
kv_lora_rank: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
layer_idx=None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.layer_idx = layer_idx
|
||||
self.hidden_size = hidden_size
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.num_heads = num_heads
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
assert num_heads % tp_size == 0
|
||||
self.num_local_heads = num_heads // tp_size
|
||||
self.scaling = self.qk_head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
if self.q_lora_rank is not None:
|
||||
self.q_a_proj = ReplicatedLinear(self.hidden_size,
|
||||
self.q_lora_rank,
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
self.q_a_layernorm = RMSNorm(self.q_lora_rank,
|
||||
eps=config.rms_norm_eps)
|
||||
self.q_b_proj = ColumnParallelLinear(q_lora_rank,
|
||||
self.num_heads *
|
||||
self.qk_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
else:
|
||||
self.q_proj = ColumnParallelLinear(self.hidden_size,
|
||||
self.num_heads *
|
||||
self.qk_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
|
||||
self.kv_a_proj_with_mqa = ReplicatedLinear(self.hidden_size,
|
||||
self.kv_lora_rank +
|
||||
self.qk_rope_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
|
||||
eps=config.rms_norm_eps)
|
||||
self.kv_b_proj = ColumnParallelLinear(
|
||||
self.kv_lora_rank,
|
||||
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
# O projection.
|
||||
self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
rope_scaling['type'] = 'deepseek_yarn'
|
||||
self.rotary_emb = get_rope(qk_rope_head_dim,
|
||||
rotary_dim=qk_rope_head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
is_neox_style=False)
|
||||
|
||||
if rope_scaling:
|
||||
mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
|
||||
scaling_factor = rope_scaling["factor"]
|
||||
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
|
||||
self.scaling = self.scaling * mscale * mscale
|
||||
|
||||
# self.attn = Attention(self.num_heads,
|
||||
# self.qk_head_dim,
|
||||
# self.scaling,
|
||||
# num_kv_heads=self.num_heads)
|
||||
|
||||
# TODO, support head_size 192
|
||||
self.attn = Attention(self.num_local_heads,
|
||||
256,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_local_heads,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
if self.q_lora_rank is not None:
|
||||
q = self.q_a_proj(hidden_states)[0]
|
||||
q = self.q_a_layernorm(q)
|
||||
q = self.q_b_proj(q)[0].view(-1, self.num_local_heads,
|
||||
self.qk_head_dim)
|
||||
else:
|
||||
q = self.q_proj(hidden_states)[0].view(-1, self.num_local_heads,
|
||||
self.qk_head_dim)
|
||||
q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim],
|
||||
dim=-1)
|
||||
latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
|
||||
kv_a, _ = latent_cache.split(
|
||||
[self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
||||
latent_cache = latent_cache.unsqueeze(1)
|
||||
kv_a = self.kv_a_layernorm(kv_a.contiguous())
|
||||
kv = self.kv_b_proj(kv_a)[0]
|
||||
kv = kv.view(-1, self.num_local_heads,
|
||||
self.qk_nope_head_dim + self.v_head_dim)
|
||||
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
||||
k_pe = latent_cache[:, :, self.kv_lora_rank:]
|
||||
q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
|
||||
q[..., self.qk_nope_head_dim:] = q_pe
|
||||
k = torch.empty_like(q)
|
||||
k[..., :self.qk_nope_head_dim] = k_nope
|
||||
k[..., self.qk_nope_head_dim:] = k_pe
|
||||
q = torch.nn.functional.pad(q, [0, 256 - self.qk_head_dim],
|
||||
value=0).view(-1,
|
||||
self.num_local_heads * 256)
|
||||
k = torch.nn.functional.pad(k, [0, 256 - self.qk_head_dim],
|
||||
value=0).view(-1,
|
||||
self.num_local_heads * 256)
|
||||
v = torch.nn.functional.pad(v, [0, 256 - self.v_head_dim],
|
||||
value=0).view(-1,
|
||||
self.num_local_heads * 256)
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||
attn_output = attn_output.view(
|
||||
-1, self.num_local_heads, 256)[..., :self.v_head_dim].reshape(
|
||||
-1, self.num_local_heads * self.v_head_dim)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class DeepseekV2DecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
layer_idx: int,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
self.self_attn = DeepseekV2Attention(
|
||||
config=config,
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
qk_nope_head_dim=config.qk_nope_head_dim,
|
||||
qk_rope_head_dim=config.qk_rope_head_dim,
|
||||
v_head_dim=config.v_head_dim,
|
||||
q_lora_rank=config.q_lora_rank
|
||||
if hasattr(config, "q_lora_rank") else None,
|
||||
kv_lora_rank=config.kv_lora_rank,
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
layer_idx=layer_idx,
|
||||
)
|
||||
if (config.n_routed_experts is not None
|
||||
and layer_idx >= config.first_k_dense_replace
|
||||
and layer_idx % config.moe_layer_freq == 0):
|
||||
self.mlp = DeepseekV2MoE(config=config, quant_config=quant_config)
|
||||
else:
|
||||
self.mlp = DeepseekV2MLP(
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class DeepseekV2Model(nn.Module):
|
||||
|
||||
fall_back_to_pt_during_load = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
DeepseekV2DecoderLayer(config,
|
||||
layer_idx,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config)
|
||||
for layer_idx in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
residual = None
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(positions, hidden_states,
|
||||
kv_caches[i], attn_metadata,
|
||||
residual)
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class DeepseekV2ForCausalLM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.quant_config = quant_config
|
||||
self.model = DeepseekV2Model(config, cache_config, quant_config)
|
||||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
self.sampler = Sampler()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
attn_metadata)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: Optional[torch.Tensor],
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in weights:
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
# Skip experts that are not assigned to this worker.
|
||||
if (("mlp.experts." in name or "mlp.shared_experts." in name)
|
||||
and name not in params_dict):
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
# Skip experts that are not assigned to this worker.
|
||||
if (("mlp.experts." in name or "mlp.shared_experts." in name)
|
||||
and name not in params_dict):
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
Loading…
Reference in New Issue
Block a user