extend cuda graph size for H200 (#7894)

Co-authored-by: youkaichao <youkaichao@126.com>
This commit is contained in:
kushanam 2024-08-29 12:15:04 -07:00 committed by GitHub
parent 6b3421567d
commit c334b1898b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -60,10 +60,14 @@ logger = init_logger(__name__)
LORA_WARMUP_RANK = 8 LORA_WARMUP_RANK = 8
_BATCH_SIZE_ALIGNMENT = 8 _BATCH_SIZE_ALIGNMENT = 8
# Capture graphs for token size 1, 2, 4, 8, 16, 24, 32, 40, ..., 256. # all the token sizes that **can** be captured by cudagraph.
# they can be arbitrarily large.
# currently it includes: 1, 2, 4, 8, 16, 24, 32, 40, ..., 8192.
# the actual sizes to capture will be determined by the model,
# depending on the model's max_num_seqs.
# NOTE: _get_graph_batch_size needs to be updated if this list is changed. # NOTE: _get_graph_batch_size needs to be updated if this list is changed.
_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [ _BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [
_BATCH_SIZE_ALIGNMENT * i for i in range(1, 33) _BATCH_SIZE_ALIGNMENT * i for i in range(1, 1025)
] ]
_NUM_WARMUP_ITERS = 2 _NUM_WARMUP_ITERS = 2
@ -660,7 +664,7 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
def _use_captured_graph(self, batch_size: int, def _use_captured_graph(self, batch_size: int,
max_decode_seq_len: int) -> bool: max_decode_seq_len: int) -> bool:
return (self.decode_only and not self.runner.model_config.enforce_eager return (self.decode_only and not self.runner.model_config.enforce_eager
and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1] and batch_size <= self.runner.max_batchsize_to_capture
and max_decode_seq_len <= self.runner.max_seq_len_to_capture) and max_decode_seq_len <= self.runner.max_seq_len_to_capture)
def build(self) -> ModelInputForGPU: def build(self) -> ModelInputForGPU:
@ -846,6 +850,8 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
self.sliding_window = model_config.get_sliding_window() self.sliding_window = model_config.get_sliding_window()
self.block_size = cache_config.block_size self.block_size = cache_config.block_size
self.max_seq_len_to_capture = self.model_config.max_seq_len_to_capture self.max_seq_len_to_capture = self.model_config.max_seq_len_to_capture
self.max_batchsize_to_capture = _get_max_graph_batch_size(
self.scheduler_config.max_num_seqs)
self.graph_runners: List[Dict[int, CUDAGraphRunner]] = [ self.graph_runners: List[Dict[int, CUDAGraphRunner]] = [
{} for _ in range(self.parallel_config.pipeline_parallel_size) {} for _ in range(self.parallel_config.pipeline_parallel_size)
@ -863,7 +869,7 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
# The shape of the cached block table will be # The shape of the cached block table will be
# (max batch size to capture, max context len to capture / block size). # (max batch size to capture, max context len to capture / block size).
self.graph_block_tables = np.zeros( self.graph_block_tables = np.zeros(
(max(_BATCH_SIZES_TO_CAPTURE), self.get_max_block_per_batch()), (self.max_batchsize_to_capture, self.get_max_block_per_batch()),
dtype=np.int32) dtype=np.int32)
num_attn_heads = self.model_config.get_num_attention_heads( num_attn_heads = self.model_config.get_num_attention_heads(
self.parallel_config) self.parallel_config)
@ -1218,7 +1224,7 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
start_time = time.perf_counter() start_time = time.perf_counter()
# Prepare dummy inputs. These will be reused for all batch sizes. # Prepare dummy inputs. These will be reused for all batch sizes.
max_batch_size = max(_BATCH_SIZES_TO_CAPTURE) max_batch_size = self.max_batchsize_to_capture
input_tokens = torch.zeros(max_batch_size, dtype=torch.long).cuda() input_tokens = torch.zeros(max_batch_size, dtype=torch.long).cuda()
input_positions = torch.zeros(max_batch_size, dtype=torch.long).cuda() input_positions = torch.zeros(max_batch_size, dtype=torch.long).cuda()
@ -1246,8 +1252,7 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
None None
] * self.parallel_config.pipeline_parallel_size ] * self.parallel_config.pipeline_parallel_size
graph_batch_size = _get_graph_batch_size( graph_batch_size = self.max_batchsize_to_capture
self.scheduler_config.max_num_seqs)
batch_size_capture_list = [ batch_size_capture_list = [
bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size
] ]
@ -1673,3 +1678,22 @@ def _get_graph_batch_size(batch_size: int) -> int:
else: else:
return ((batch_size + _BATCH_SIZE_ALIGNMENT - 1) // return ((batch_size + _BATCH_SIZE_ALIGNMENT - 1) //
_BATCH_SIZE_ALIGNMENT * _BATCH_SIZE_ALIGNMENT) _BATCH_SIZE_ALIGNMENT * _BATCH_SIZE_ALIGNMENT)
def _get_max_graph_batch_size(max_num_seqs: int) -> int:
"""
max_num_seqs: Maximum number of sequences in a batch.
_BATCH_SIZES_TO_CAPTURE: all the sizes that we want to capture.
pad the max_num_seqs if necessary by calling _get_graph_batch_size,
which will deal with some edge cases like 1, 2, 4.
if the padded size is in _BATCH_SIZES_TO_CAPTURE, return the padded size.
if not, it means the padded size is larger than the largest size in
_BATCH_SIZES_TO_CAPTURE, return the largest size in _BATCH_SIZES_TO_CAPTURE.
"""
padded_size = _get_graph_batch_size(max_num_seqs)
if padded_size in _BATCH_SIZES_TO_CAPTURE:
return padded_size
assert padded_size > _BATCH_SIZES_TO_CAPTURE[-1]
return _BATCH_SIZES_TO_CAPTURE[-1]