Add support for a rope extension method (#6553)

This commit is contained in:
Simon Mo 2024-07-18 18:53:03 -07:00 committed by GitHub
parent 1689219ebf
commit c5df56f88b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 48 additions and 4 deletions

View File

@ -151,6 +151,15 @@ class ModelConfig:
self.hf_text_config = get_hf_text_config(self.hf_config)
self.dtype = _get_and_verify_dtype(self.hf_text_config, dtype)
if (getattr(self.hf_config, "max_position_embeddings", 0) == 131072
and getattr(self.hf_config, "rope_scaling", None) is None):
# Note(simon): this is a special case for a model that doesn't
# supply rope_scaling. We should remove this once the model is
# updated.
self.hf_config.update({"rope_scaling": {
"type": "extended",
}})
if (not self.disable_sliding_window
and self.hf_text_config.model_type == "gemma2"
and self.hf_text_config.sliding_window is not None):
@ -1442,8 +1451,9 @@ def _get_and_verify_max_len(
rope_scaling = getattr(hf_config, "rope_scaling", None)
# The correct one should be "longrope", kept "su" here
# to be backward compatible
if rope_scaling is not None and rope_scaling["type"] != "su" \
and rope_scaling["type"] != "longrope":
if rope_scaling is not None and rope_scaling["type"] not in {
"su", "longrope", "extended"
}:
if disable_sliding_window:
# TODO(robertgshaw): Find a model that supports rope_scaling
# with sliding window to see if this case should be allowed.

View File

@ -733,6 +733,36 @@ class GemmaRotaryEmbedding(RotaryEmbedding):
return inv_freq
class ExtendedRotaryEmbedding(RotaryEmbedding):
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
inv_freqs = super()._compute_inv_freq(base)
return self.apply_scaling(inv_freqs)
def apply_scaling(self, freqs: torch.Tensor):
scale_factor = 8
low_freq_factor = 1
high_freq_factor = 4
old_context_len = 8192
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
new_freqs = []
for freq in freqs:
wavelen = 2 * math.pi / freq
if wavelen < high_freq_wavelen:
new_freqs.append(freq)
elif wavelen > low_freq_wavelen:
new_freqs.append(freq / scale_factor)
else:
assert low_freq_wavelen != high_freq_wavelen
smooth = (old_context_len / wavelen - low_freq_factor) / (
high_freq_factor - low_freq_factor)
new_freqs.append((1 - smooth) * freq / scale_factor +
smooth * freq)
return torch.tensor(new_freqs, dtype=freqs.dtype, device=freqs.device)
_ROPE_DICT: Dict[Tuple, RotaryEmbedding] = {}
@ -767,9 +797,13 @@ def get_rope(
scaling_type = rope_scaling["type"]
# The correct one should be "longrope" but keep "su" here
# for backward compatible
if scaling_type != "su" and scaling_type != "longrope":
if scaling_type not in {"su", "longrope", "extended"}:
scaling_factor = rope_scaling["factor"]
if scaling_type == "linear":
if scaling_type == "extended":
rotary_emb = ExtendedRotaryEmbedding(head_size, rotary_dim,
max_position, base,
is_neox_style, dtype)
elif scaling_type == "linear":
rotary_emb = LinearScalingRotaryEmbedding(head_size, rotary_dim,
max_position, base,
is_neox_style,