[Model] Add support for GPT-J (#226)
Co-authored-by: woWoosuk Kwon <woosuk.kwon@berkeley.edu>
This commit is contained in:
parent
75beba29b5
commit
c894836108
@ -44,6 +44,7 @@ vLLM seamlessly supports many Huggingface models, including the following archit
|
||||
- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)
|
||||
- GPT-2 (`gpt2`, `gpt2-xl`, etc.)
|
||||
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
|
||||
- GPT-J (`EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc.)
|
||||
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
|
||||
- LLaMA (`lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
|
||||
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
|
||||
|
||||
@ -382,7 +382,7 @@ void single_query_cached_kv_attention_launcher(
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
switch (head_size) {
|
||||
// NOTE(woosuk): To reduce the compilation time, we omitted head sizes
|
||||
// 32, 160, 192, 256.
|
||||
// 32, 160, 192.
|
||||
// case 32:
|
||||
// LAUNCH_ATTENTION_KERNEL(T, 32, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
@ -407,9 +407,9 @@ void single_query_cached_kv_attention_launcher(
|
||||
// case 192:
|
||||
// LAUNCH_ATTENTION_KERNEL(T, 192, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
// case 256:
|
||||
// LAUNCH_ATTENTION_KERNEL(T, 256, BLOCK_SIZE, NUM_THREADS);
|
||||
// break;
|
||||
case 256:
|
||||
LAUNCH_ATTENTION_KERNEL(T, 256, BLOCK_SIZE, NUM_THREADS);
|
||||
break;
|
||||
default:
|
||||
TORCH_CHECK(false, "Unsupported head size: ", head_size);
|
||||
break;
|
||||
|
||||
@ -23,6 +23,9 @@ Alongside each architecture, we include some popular models that use it.
|
||||
* - :code:`GPTBigCodeForCausalLM`
|
||||
- StarCoder, SantaCoder, WizardCoder
|
||||
- :code:`bigcode/starcoder`, :code:`bigcode/gpt_bigcode-santacoder`, :code:`WizardLM/WizardCoder-15B-V1.0`, etc.
|
||||
* - :code:`GPTJForCausalLM`
|
||||
- GPT-J
|
||||
- :code:`EleutherAI/gpt-j-6b`, :code:`nomic-ai/gpt4all-j`, etc.
|
||||
* - :code:`GPTNeoXForCausalLM`
|
||||
- GPT-NeoX, Pythia, OpenAssistant, Dolly V2, StableLM
|
||||
- :code:`EleutherAI/gpt-neox-20b`, :code:`EleutherAI/pythia-12b`, :code:`OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5`, :code:`databricks/dolly-v2-12b`, :code:`stabilityai/stablelm-tuned-alpha-7b`, etc.
|
||||
|
||||
@ -286,7 +286,7 @@ def test_single_query_cached_kv_attention() -> None:
|
||||
torch.cuda.manual_seed(TEST_SEED)
|
||||
for dtype in [torch.half, torch.bfloat16, torch.float]:
|
||||
for block_size in [8, 16, 32]:
|
||||
for head_size in [64, 80, 96, 128]:
|
||||
for head_size in [64, 80, 96, 112, 128, 256]:
|
||||
print(f'Testing single_query_cached_kv_attention with '
|
||||
f'dtype={dtype}, block_size={block_size}, '
|
||||
f'head_size={head_size}')
|
||||
@ -304,7 +304,7 @@ def test_multi_query_kv_attention() -> None:
|
||||
torch.random.manual_seed(TEST_SEED)
|
||||
torch.cuda.manual_seed(TEST_SEED)
|
||||
for dtype in [torch.half, torch.bfloat16, torch.float]:
|
||||
for head_size in [64, 80, 96, 128]:
|
||||
for head_size in [64, 80, 96, 112, 128, 256]:
|
||||
print(f'Testing multi_query_kv_attention with dtype={dtype}, '
|
||||
f'head_size={head_size}')
|
||||
run_multi_query_kv_attention(
|
||||
|
||||
@ -12,7 +12,7 @@ from vllm import cache_ops
|
||||
from vllm import pos_encoding_ops
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
|
||||
_SUPPORTED_HEAD_SIZES = [64, 80, 96, 112, 128]
|
||||
_SUPPORTED_HEAD_SIZES = [64, 80, 96, 112, 128, 256]
|
||||
|
||||
|
||||
class PagedAttention(nn.Module):
|
||||
|
||||
@ -38,12 +38,15 @@ class Sampler(nn.Module):
|
||||
embedding: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
input_metadata: InputMetadata,
|
||||
embedding_bias: Optional[torch.Tensor] = None,
|
||||
) -> Dict[int, SequenceOutputs]:
|
||||
# Get the hidden states that we use for sampling.
|
||||
hidden_states = _prune_hidden_states(hidden_states, input_metadata)
|
||||
|
||||
# Get the logits for the next tokens.
|
||||
logits = torch.matmul(hidden_states, embedding.t())
|
||||
if embedding_bias is not None:
|
||||
logits += embedding_bias
|
||||
logits = gather_from_tensor_model_parallel_region(logits)
|
||||
# Remove paddings in vocab (if any).
|
||||
logits = logits[:, :self.vocab_size]
|
||||
|
||||
@ -14,6 +14,7 @@ _MODEL_REGISTRY = {
|
||||
"BloomForCausalLM": BloomForCausalLM,
|
||||
"GPT2LMHeadModel": GPT2LMHeadModel,
|
||||
"GPTBigCodeForCausalLM": GPTBigCodeForCausalLM,
|
||||
"GPTJForCausalLM": GPTJForCausalLM,
|
||||
"GPTNeoXForCausalLM": GPTNeoXForCausalLM,
|
||||
"LlamaForCausalLM": LlamaForCausalLM,
|
||||
"LLaMAForCausalLM": LlamaForCausalLM, # For decapoda-research/llama-*
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
from vllm.model_executor.models.bloom import BloomForCausalLM
|
||||
from vllm.model_executor.models.gpt2 import GPT2LMHeadModel
|
||||
from vllm.model_executor.models.gpt_bigcode import GPTBigCodeForCausalLM
|
||||
from vllm.model_executor.models.gpt_j import GPTJForCausalLM
|
||||
from vllm.model_executor.models.gpt_neox import GPTNeoXForCausalLM
|
||||
from vllm.model_executor.models.llama import LlamaForCausalLM
|
||||
from vllm.model_executor.models.mpt import MPTForCausalLM
|
||||
@ -10,6 +11,7 @@ __all__ = [
|
||||
"BloomForCausalLM",
|
||||
"GPT2LMHeadModel",
|
||||
"GPTBigCodeForCausalLM",
|
||||
"GPTJForCausalLM",
|
||||
"GPTNeoXForCausalLM",
|
||||
"LlamaForCausalLM",
|
||||
"MPTForCausalLM",
|
||||
|
||||
251
vllm/model_executor/models/gpt_j.py
Normal file
251
vllm/model_executor/models/gpt_j.py
Normal file
@ -0,0 +1,251 @@
|
||||
# coding=utf-8
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gptj/modeling_gptj.py
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only GPT-J model compatible with HuggingFace weights.
|
||||
|
||||
The input of the model is flattened to a 1D tensor of tokens. The model uses
|
||||
InputMetadata to extract the original 2D shape of the input.
|
||||
"""
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import GPTJConfig
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.weight_utils import (hf_model_weights_iterator,
|
||||
load_tensor_parallel_weights)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.parallel_utils.tensor_parallel import (
|
||||
VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
|
||||
from vllm.sequence import SequenceOutputs
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class GPTJAttention(nn.Module):
|
||||
|
||||
def __init__(self, config: GPTJConfig):
|
||||
super().__init__()
|
||||
self.total_num_heads = config.num_attention_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
self.head_size = self.hidden_size // self.total_num_heads
|
||||
|
||||
self.qkv_proj = ColumnParallelLinear(config.hidden_size,
|
||||
3 * config.hidden_size,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
perform_initialization=False)
|
||||
self.out_proj = RowParallelLinear(config.hidden_size,
|
||||
config.hidden_size,
|
||||
bias=False,
|
||||
input_is_parallel=True,
|
||||
perform_initialization=False)
|
||||
|
||||
tp_world_size = get_tensor_model_parallel_world_size()
|
||||
assert self.total_num_heads % tp_world_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_world_size
|
||||
|
||||
scaling = self.head_size**-0.5
|
||||
assert config.rotary
|
||||
assert config.rotary_dim % 2 == 0
|
||||
self.attn = PagedAttentionWithRoPE(self.num_heads, self.head_size,
|
||||
scaling, config.rotary_dim)
|
||||
self.warmup = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
position_ids: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(position_ids, q, k, v, k_cache, v_cache,
|
||||
input_metadata, cache_event)
|
||||
attn_output, _ = self.out_proj(attn_output)
|
||||
return attn_output
|
||||
|
||||
|
||||
class GPTJMLP(nn.Module):
|
||||
|
||||
def __init__(self, intermediate_size: int, config: GPTJConfig):
|
||||
super().__init__()
|
||||
hidden_size = config.n_embd
|
||||
self.fc_in = ColumnParallelLinear(hidden_size,
|
||||
intermediate_size,
|
||||
gather_output=False,
|
||||
perform_initialization=False)
|
||||
self.fc_out = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
input_is_parallel=True,
|
||||
perform_initialization=False)
|
||||
self.act = get_act_fn(config.activation_function)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states, _ = self.fc_in(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states, _ = self.fc_out(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GPTJBlock(nn.Module):
|
||||
|
||||
def __init__(self, config: GPTJConfig):
|
||||
super().__init__()
|
||||
if config.n_inner is None:
|
||||
inner_dim = 4 * config.n_embd
|
||||
else:
|
||||
inner_dim = config.n_inner
|
||||
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
||||
self.attn = GPTJAttention(config)
|
||||
self.mlp = GPTJMLP(inner_dim, config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
position_ids: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
residual = hidden_states
|
||||
hidden_states = self.ln_1(hidden_states)
|
||||
attn_output = self.attn(
|
||||
position_ids=position_ids,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
cache_event=cache_event,
|
||||
)
|
||||
mlp_output = self.mlp(hidden_states)
|
||||
hidden_states = attn_output + mlp_output + residual
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GPTJModel(nn.Module):
|
||||
|
||||
def __init__(self, config: GPTJConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.embed_dim = config.n_embd
|
||||
self.wte = VocabParallelEmbedding(config.vocab_size,
|
||||
self.embed_dim,
|
||||
perform_initialization=False)
|
||||
self.h = nn.ModuleList(
|
||||
[GPTJBlock(config) for _ in range(config.n_layer)])
|
||||
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.wte(input_ids)
|
||||
for i in range(len(self.h)):
|
||||
if cache_events is None:
|
||||
cache_event = None
|
||||
else:
|
||||
cache_event = cache_events[i]
|
||||
layer = self.h[i]
|
||||
hidden_states = layer(
|
||||
position_ids,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
cache_event,
|
||||
)
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GPTJForCausalLM(nn.Module):
|
||||
|
||||
def __init__(self, config: GPTJConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
assert not config.tie_word_embeddings
|
||||
self.transformer = GPTJModel(config)
|
||||
self.lm_head = ColumnParallelLinear(config.n_embd,
|
||||
config.vocab_size,
|
||||
gather_output=False,
|
||||
perform_initialization=False)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> Dict[int, SequenceOutputs]:
|
||||
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
||||
input_metadata, cache_events)
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
input_metadata, self.lm_head.bias)
|
||||
return next_tokens
|
||||
|
||||
_column_parallel_weights = [
|
||||
"wte.weight", "fc_in.weight", "fc_in.bias", "lm_head.weight",
|
||||
"lm_head.bias"
|
||||
]
|
||||
_row_parallel_weights = ["out_proj.weight", "fc_out.weight"]
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
use_np_cache: bool = False):
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
state_dict = self.state_dict()
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, use_np_cache):
|
||||
if "attn.bias" in name or "attn.masked_bias" in name:
|
||||
continue
|
||||
|
||||
is_attention_weight = False
|
||||
for stride_id, att_weight_name in enumerate(
|
||||
["q_proj", "k_proj", "v_proj"]):
|
||||
if att_weight_name not in name:
|
||||
continue
|
||||
param = state_dict[name.replace(att_weight_name, "qkv_proj")]
|
||||
shard_size = param.shape[1]
|
||||
loaded_weight = loaded_weight[shard_size * tp_rank:shard_size *
|
||||
(tp_rank + 1)]
|
||||
param_slice = param.data[shard_size * stride_id:shard_size *
|
||||
(stride_id + 1)]
|
||||
assert param_slice.shape == loaded_weight.shape
|
||||
param_slice.copy_(loaded_weight)
|
||||
is_attention_weight = True
|
||||
break
|
||||
if is_attention_weight:
|
||||
continue
|
||||
|
||||
param = state_dict[name]
|
||||
load_tensor_parallel_weights(param, loaded_weight, name,
|
||||
self._column_parallel_weights,
|
||||
self._row_parallel_weights, tp_rank)
|
||||
@ -1,3 +1,4 @@
|
||||
# coding=utf-8
|
||||
# Adapted from https://huggingface.co/mosaicml/mpt-7b/tree/main
|
||||
import math
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
Loading…
Reference in New Issue
Block a user