[Model] Initial Support for Chameleon (#5770)
This commit is contained in:
parent
396d92d5e0
commit
c9eef37f32
@ -16,6 +16,9 @@ _GENERATION_MODELS = {
|
||||
"BaiChuanForCausalLM": ("baichuan", "BaiChuanForCausalLM"), # baichuan-7b
|
||||
"BaichuanForCausalLM": ("baichuan", "BaichuanForCausalLM"), # baichuan-13b
|
||||
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
|
||||
"ChameleonForCausalLM":
|
||||
("chameleon", "ChameleonForConditionalGeneration"
|
||||
), #TODO(ywang96): fix model name when huggingface fixes it
|
||||
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
|
||||
"ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"),
|
||||
"CohereForCausalLM": ("commandr", "CohereForCausalLM"),
|
||||
|
||||
554
vllm/model_executor/models/chameleon.py
Normal file
554
vllm/model_executor/models/chameleon.py
Normal file
@ -0,0 +1,554 @@
|
||||
from functools import cached_property
|
||||
from typing import Any, Dict, Iterable, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.config import CacheConfig
|
||||
from vllm.distributed import get_tensor_model_parallel_world_size
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors, SamplerOutput
|
||||
from vllm.transformers_utils.configs import ChameleonConfig
|
||||
from vllm.utils import print_warning_once
|
||||
|
||||
|
||||
class ChameleonLayerNorm(nn.LayerNorm):
|
||||
|
||||
def __init__(self, hidden_size, *args, **kwargs):
|
||||
super().__init__(hidden_size, *args, **kwargs)
|
||||
self.normalized_shape = (hidden_size[-1], )
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = F.layer_norm(hidden_states,
|
||||
self.normalized_shape,
|
||||
None,
|
||||
None,
|
||||
eps=1e-5)
|
||||
hidden_states = hidden_states * self.weight + self.bias
|
||||
return hidden_states
|
||||
|
||||
|
||||
# Copied from vllm.model_executor.models.llama.LlamaMLP -> ChameleonMLP
|
||||
class ChameleonMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
bias: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
input_size=hidden_size,
|
||||
output_sizes=[intermediate_size] * 2,
|
||||
bias=bias,
|
||||
quant_config=quant_config)
|
||||
self.down_proj = RowParallelLinear(input_size=intermediate_size,
|
||||
output_size=hidden_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
# Modified from vllm.model_executor.models.llama.LlamaAttention -> ChameleonAttention #noqa
|
||||
class ChameleonAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 4096,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
bias: bool = False,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size=hidden_size,
|
||||
head_size=self.head_dim,
|
||||
total_num_heads=self.total_num_heads,
|
||||
total_num_kv_heads=self.total_num_kv_heads,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
input_size=self.total_num_heads * self.head_dim,
|
||||
output_size=hidden_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
self.q_norm = ChameleonLayerNorm((self.num_heads, self.head_dim))
|
||||
self.k_norm = ChameleonLayerNorm((self.num_kv_heads, self.head_dim))
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
)
|
||||
|
||||
self.attn = Attention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config)
|
||||
|
||||
def _apply_qk_norm(self, q: torch.Tensor,
|
||||
k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# reshape for layernorm
|
||||
q = q.reshape(-1, self.num_heads, self.head_dim)
|
||||
k = k.reshape(-1, self.num_kv_heads, self.head_dim)
|
||||
q = self.q_norm(q)
|
||||
k = self.k_norm(k)
|
||||
q = q.view(*q.shape[:-2], -1)
|
||||
k = k.view(*k.shape[:-2], -1)
|
||||
return q, k
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self._apply_qk_norm(q, k)
|
||||
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class ChameleonDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ChameleonConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
if rope_scaling is not None and getattr(
|
||||
config, "original_max_position_embeddings", None):
|
||||
rope_scaling["original_max_position_embeddings"] = (
|
||||
config.original_max_position_embeddings)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
4096)
|
||||
|
||||
self.self_attn = ChameleonAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=getattr(config, "num_key_value_heads",
|
||||
config.num_attention_heads),
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
quant_config=quant_config,
|
||||
bias=False,
|
||||
cache_config=cache_config,
|
||||
)
|
||||
self.mlp = ChameleonMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
bias=getattr(config, "mlp_bias", False),
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class ChameleonSwinDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ChameleonConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
if rope_scaling is not None and getattr(
|
||||
config, "original_max_position_embeddings", None):
|
||||
rope_scaling["original_max_position_embeddings"] = (
|
||||
config.original_max_position_embeddings)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
4096)
|
||||
|
||||
self.self_attn = ChameleonAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=getattr(config, "num_key_value_heads",
|
||||
config.num_attention_heads),
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
quant_config=quant_config,
|
||||
bias=False,
|
||||
cache_config=cache_config,
|
||||
)
|
||||
self.mlp = ChameleonMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
bias=getattr(config, "mlp_bias", False),
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
|
||||
residual = hidden_states
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
)
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class ChameleonImageVocabularyMapping:
|
||||
"""
|
||||
A class for mapping discrete image tokens from VQGAN to BPE tokens.
|
||||
"""
|
||||
|
||||
def __init__(self, vocab_map):
|
||||
self.vocab_map = vocab_map
|
||||
self.image_token_id = vocab_map.get("<image>")
|
||||
|
||||
@cached_property
|
||||
def val2name(self):
|
||||
return {v: k for k, v in self.vocab_map.items()}
|
||||
|
||||
@cached_property
|
||||
def image_tokens(self):
|
||||
return sorted([
|
||||
val for name, val in self.vocab_map.items()
|
||||
if name.startswith("IMGIMG")
|
||||
])
|
||||
|
||||
@cached_property
|
||||
def bpe2img(self):
|
||||
img_tkn_chr_mapping = {chr(ord("A") + i): str(i) for i in range(10)}
|
||||
|
||||
def remap(old_name: str) -> str:
|
||||
return "".join(
|
||||
img_tkn_chr_mapping.get(c, c)
|
||||
for c in old_name[len("IMGIMG"):-1])
|
||||
|
||||
return {
|
||||
tok: int(remap(self.val2name[tok]))
|
||||
for tok in self.image_tokens
|
||||
}
|
||||
|
||||
@cached_property
|
||||
def img2bpe(self):
|
||||
return {v: k for k, v in self.bpe2img.items()}
|
||||
|
||||
@cached_property
|
||||
def bpe2img_search_tensors(self):
|
||||
return torch.tensor(sorted(self.bpe2img.keys())), torch.tensor(
|
||||
sorted(self.bpe2img.values()))
|
||||
|
||||
@cached_property
|
||||
def img2bpe_mapping_tensor(self):
|
||||
mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int)
|
||||
for k, v in self.img2bpe.items():
|
||||
mapping[k] = v
|
||||
return mapping
|
||||
|
||||
def convert_img2bpe(self, img_batch: torch.Tensor) -> torch.Tensor:
|
||||
device = img_batch.device
|
||||
img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")]
|
||||
return img_tokens.to(device)
|
||||
|
||||
|
||||
class ChameleonModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ChameleonConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
self.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.vocabulary_mapping = ChameleonImageVocabularyMapping(
|
||||
config.vocabulary_map)
|
||||
decoder_layer = ChameleonDecoderLayer if not self.config.swin_norm \
|
||||
else ChameleonSwinDecoderLayer
|
||||
self.layers = nn.ModuleList([
|
||||
decoder_layer(config=config,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
# TODO: Support image input
|
||||
# self.vqmodel = ChameleonVQModel(config.vq_config)
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.embed_tokens(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.Tensor],
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
if inputs_embeds is not None:
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
hidden_states = self.get_input_embeddings(input_ids)
|
||||
residual = None
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
attn_metadata,
|
||||
residual,
|
||||
)
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class ChameleonForConditionalGeneration(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ChameleonConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.model = ChameleonModel(config, cache_config, quant_config)
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
self.lm_head = ParallelLMHead(
|
||||
self.unpadded_vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
if config.tie_word_embeddings:
|
||||
self.lm_head.weight = self.model.embed_tokens.weight
|
||||
|
||||
logit_scale = getattr(config, "logit_scale", 1.0)
|
||||
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
||||
config.vocab_size, logit_scale)
|
||||
self.sampler = Sampler()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
|
||||
# TODO (ywang96): Support image input
|
||||
# image_tokens = self.process_image_input(**kwargs)
|
||||
# image_mask = input_ids == self.vocabulary_mapping.image_token_id
|
||||
# input_ids[special_image_mask] = image_tokens.flatten().to(input_ids.dtype) #noqa
|
||||
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
attn_metadata)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
|
||||
# Disallow image tokens which does not include special
|
||||
# begin-image and end-image tokens
|
||||
image_tokens = self.model.vocabulary_mapping.image_tokens
|
||||
logits[:, image_tokens] = torch.finfo(logits.dtype).min
|
||||
|
||||
return logits
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
(".qkv_proj", ".q_proj", "q"),
|
||||
(".qkv_proj", ".k_proj", "k"),
|
||||
(".qkv_proj", ".v_proj", "v"),
|
||||
(".gate_up_proj", ".gate_proj", 0),
|
||||
(".gate_up_proj", ".up_proj", 1),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in weights:
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
|
||||
# Skip loading vqgan
|
||||
# TODO: add support for the vision model
|
||||
if "vqmodel" in name:
|
||||
continue
|
||||
if ("rotary_emb.cos_cached" in name
|
||||
or "rotary_emb.sin_cached" in name):
|
||||
# Models trained using ColossalAI may include these tensors in
|
||||
# the checkpoint. Skip them.
|
||||
continue
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
# Remapping the name of FP8 kv-scale.
|
||||
if name.endswith("kv_scale"):
|
||||
remapped_kv_scale_name = name.replace(
|
||||
".kv_scale", ".attn.kv_scale")
|
||||
if remapped_kv_scale_name not in params_dict:
|
||||
print_warning_once(
|
||||
f"Found kv scale in the checkpoint (e.g. {name}), "
|
||||
"but not found the expected name in the model "
|
||||
f"(e.g. {remapped_kv_scale_name}). kv-scale is "
|
||||
"not loaded.")
|
||||
continue
|
||||
else:
|
||||
name = remapped_kv_scale_name
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
@ -5,10 +5,10 @@ from transformers import GenerationConfig, PretrainedConfig
|
||||
|
||||
from vllm.envs import VLLM_USE_MODELSCOPE
|
||||
from vllm.logger import init_logger
|
||||
from vllm.transformers_utils.configs import (ChatGLMConfig, DbrxConfig,
|
||||
JAISConfig, MedusaConfig,
|
||||
MLPSpeculatorConfig, MPTConfig,
|
||||
RWConfig)
|
||||
from vllm.transformers_utils.configs import (ChameleonConfig, ChatGLMConfig,
|
||||
DbrxConfig, JAISConfig,
|
||||
MedusaConfig, MLPSpeculatorConfig,
|
||||
MPTConfig, RWConfig)
|
||||
|
||||
if VLLM_USE_MODELSCOPE:
|
||||
from modelscope import AutoConfig
|
||||
@ -18,6 +18,7 @@ else:
|
||||
logger = init_logger(__name__)
|
||||
|
||||
_CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
|
||||
"chameleon": ChameleonConfig,
|
||||
"chatglm": ChatGLMConfig,
|
||||
"dbrx": DbrxConfig,
|
||||
"mpt": MPTConfig,
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
from vllm.transformers_utils.configs.chameleon import ChameleonConfig
|
||||
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
|
||||
from vllm.transformers_utils.configs.dbrx import DbrxConfig
|
||||
# RWConfig is for the original tiiuae/falcon-40b(-instruct) and
|
||||
@ -10,6 +11,7 @@ from vllm.transformers_utils.configs.mlp_speculator import MLPSpeculatorConfig
|
||||
from vllm.transformers_utils.configs.mpt import MPTConfig
|
||||
|
||||
__all__ = [
|
||||
"ChameleonConfig",
|
||||
"ChatGLMConfig",
|
||||
"DbrxConfig",
|
||||
"MPTConfig",
|
||||
|
||||
101
vllm/transformers_utils/configs/chameleon.py
Normal file
101
vllm/transformers_utils/configs/chameleon.py
Normal file
@ -0,0 +1,101 @@
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
|
||||
#TODO (ywang96): Remove this file and import it from
|
||||
# transformers once the new release with Chameleon support
|
||||
# is available.
|
||||
class ChameleonConfig(PretrainedConfig):
|
||||
|
||||
model_type = "chameleon"
|
||||
is_composition = True
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=65536,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=32,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=4096,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-05,
|
||||
use_cache=True,
|
||||
pad_token_id=None,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
attention_bias=False,
|
||||
attention_dropout=0.0,
|
||||
qk_layernorm=False,
|
||||
swin_norm=False,
|
||||
vq_config=None,
|
||||
vocabulary_map=None,
|
||||
mlp_bias=False,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.mlp_bias = mlp_bias
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self._rope_scaling_validation()
|
||||
self.attention_bias = attention_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
self.qk_layernorm = qk_layernorm
|
||||
self.swin_norm = swin_norm
|
||||
# vq config is currently ignored
|
||||
# self.vq_config = ChameleonVQConfig(**vq_config)
|
||||
self.vocabulary_map = vocabulary_map
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def _rope_scaling_validation(self):
|
||||
"""
|
||||
Validate the `rope_scaling` configuration.
|
||||
"""
|
||||
if self.rope_scaling is None:
|
||||
return
|
||||
|
||||
if not isinstance(self.rope_scaling,
|
||||
dict) or len(self.rope_scaling) != 2:
|
||||
raise ValueError(
|
||||
"`rope_scaling` must be a dictionary with with two fields, "
|
||||
f"`type` and `factor`, got {self.rope_scaling}")
|
||||
rope_scaling_type = self.rope_scaling.get("type", None)
|
||||
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
||||
if rope_scaling_type is None or rope_scaling_type not in [
|
||||
"linear", "dynamic"
|
||||
]:
|
||||
raise ValueError(
|
||||
"`rope_scaling`'s type field must be one of ['linear', "
|
||||
f"'dynamic'], got {rope_scaling_type}")
|
||||
if rope_scaling_factor is None or not isinstance(
|
||||
rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
||||
raise ValueError(
|
||||
"`rope_scaling`'s factor field must be a float > 1, "
|
||||
f"got {rope_scaling_factor}")
|
||||
Loading…
Reference in New Issue
Block a user