[Hardware][CPU] Support AWQ for CPU backend (#7515)

This commit is contained in:
Li, Jiang 2024-10-10 00:28:08 +08:00 committed by GitHub
parent 7dea289066
commit ca77dd7a44
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 214 additions and 7 deletions

View File

@ -27,13 +27,19 @@ docker exec cpu-test bash -c "
pytest -v -s tests/models/decoder_only/language \
--ignore=tests/models/test_fp8.py \
--ignore=tests/models/decoder_only/language/test_jamba.py \
--ignore=tests/models/decoder_only/language/test_granitemoe.py \
--ignore=tests/models/decoder_only/language/test_danube3_4b.py" # Mamba and Danube3-4B on CPU is not supported
# Run compressed-tensor test
# docker exec cpu-test bash -c "
# pytest -s -v \
# tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
# tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynanmic_per_token"
# Run AWQ test
docker exec cpu-test bash -c "
pytest -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynanmic_per_token"
tests/quantization/test_ipex_quant.py"
# online inference
docker exec cpu-test bash -c "

View File

@ -22,7 +22,7 @@ ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/li
RUN echo 'ulimit -c 0' >> ~/.bashrc
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/cpu/intel_extension_for_pytorch-2.4.0%2Bgitfbaa4bc-cp310-cp310-linux_x86_64.whl
RUN pip install intel_extension_for_pytorch==2.4.0
WORKDIR /workspace

View File

@ -28,7 +28,7 @@ The table below shows the compatibility of various quantization implementations
- ✅︎
- ✗
- ✗
-
- ✅︎
- ✗
- ✗
* - GPTQ
@ -61,7 +61,7 @@ The table below shows the compatibility of various quantization implementations
- ✅︎
- ✗
- ✗
-
- ✅︎
- ✗
- ✗
* - FP8 (W8A8)

View File

@ -0,0 +1,28 @@
"""Test model set-up and inference for quantized HF models supported
on the CPU backend using IPEX (including AWQ).
Validating the configuration and printing results for manual checking.
Run `pytest tests/quantization/test_ipex_quant.py`.
"""
import pytest
from vllm.platforms import current_platform
MODELS = [
"casperhansen/llama-3-8b-instruct-awq",
]
DTYPE = ["bfloat16"]
@pytest.mark.skipif(not current_platform.is_cpu(),
reason="only supports the CPU backend.")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", DTYPE)
def test_ipex_quant(vllm_runner, model, dtype):
with vllm_runner(model, dtype=dtype) as llm:
output = llm.generate_greedy(["The capital of France is"],
max_tokens=32)
assert output
print(output)

View File

@ -27,7 +27,7 @@ WEIGHT_LOADER_V2_SUPPORTED = [
"AWQLinearMethod", "GPTQMarlinLinearMethod", "Fp8LinearMethod",
"MarlinLinearMethod", "QQQLinearMethod", "GPTQMarlin24LinearMethod",
"TPUInt8LinearMethod", "GPTQLinearMethod", "FBGEMMFp8LinearMethod",
"ModelOptFp8LinearMethod"
"ModelOptFp8LinearMethod", "IPEXAWQLinearMethod"
]

View File

@ -21,6 +21,7 @@ from vllm.model_executor.layers.quantization.gptq_marlin import (
GPTQMarlinConfig)
from vllm.model_executor.layers.quantization.gptq_marlin_24 import (
GPTQMarlin24Config)
from vllm.model_executor.layers.quantization.ipex_quant import IPEXConfig
from vllm.model_executor.layers.quantization.marlin import MarlinConfig
from vllm.model_executor.layers.quantization.modelopt import ModelOptFp8Config
from vllm.model_executor.layers.quantization.neuron_quant import (
@ -49,6 +50,7 @@ QUANTIZATION_METHODS: Dict[str, Type[QuantizationConfig]] = {
"qqq": QQQConfig,
"experts_int8": ExpertsInt8Config,
"neuron_quant": NeuronQuantConfig,
"ipex": IPEXConfig,
}

View File

@ -20,6 +20,7 @@ from vllm.model_executor.layers.quantization.utils.marlin_utils import (
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.parameter import (GroupQuantScaleParameter,
PackedvLLMParameter)
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
logger = init_logger(__name__)
@ -123,6 +124,9 @@ class AWQMarlinConfig(QuantizationConfig):
group_size = quant_config.get("group_size")
has_zp = quant_config.get("zero_point")
if not current_platform.is_cuda():
return False
if quant_method != "awq":
return False

View File

@ -0,0 +1,166 @@
from typing import Any, Dict, List, Optional
import torch
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
from vllm.model_executor.layers.quantization.awq import AWQLinearMethod
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.platforms import current_platform
class IPEXConfig(QuantizationConfig):
"""INT8 quantization config class using IPEX for the CPU backend,
including AWQ.
"""
IPEX_QUANT_METHOD_MAP = {
"awq": 1,
"gptq": 2,
}
def __init__(
self,
method: str,
weight_bits: int,
group_size: int,
) -> None:
self.method = method
self.weight_bits = weight_bits
self.group_size = group_size
self.pack_factor = 32 // self.weight_bits
if self.weight_bits not in [4]:
raise ValueError(f"IPEX quantization supports weight bits [4], "
f"but got {self.weight_bits}.")
if self.method == "awq":
self.quant_method = IPEXAWQLinearMethod
else:
raise ValueError(f"IPEX quantization supports [awq], "
f"but got {self.method}.")
def __repr__(self) -> str:
return (f"IPEXConfig(method={self.method}"
f"weight_bits={self.weight_bits}, "
f"group_size={self.group_size}")
def get_ipex_quant_method_id(self) -> int:
return IPEXConfig.IPEX_QUANT_METHOD_MAP[self.method]
@classmethod
def get_name(cls) -> str:
return "ipex"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return -1
@staticmethod
def get_config_filenames() -> List[str]:
return [
"quant_config.json",
"quantize_config.json",
]
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "IPEXConfig":
method = cls.get_from_keys(config, ["quant_method"]).lower()
weight_bits = cls.get_from_keys(config, ["w_bit", "bits"])
group_size = cls.get_from_keys(config, ["q_group_size", "group_size"])
return cls(method, weight_bits, group_size)
@classmethod
def override_quantization_method(cls, hf_quant_cfg,
user_quant) -> Optional[str]:
if not current_platform.is_cpu():
return None
quant_method = hf_quant_cfg.get("quant_method", "").lower()
if quant_method in ["awq"]:
return cls.get_name()
return None
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["LinearMethodBase"]:
if isinstance(layer, LinearBase):
return self.quant_method(self)
return None
def get_scaled_act_names(self) -> List[str]:
if self.method == "awq":
return ["gelu", "gelu_fast", "gelu_new", "gelu_pytorch_tanh"]
else:
return []
class IPEXAWQLinearMethod(AWQLinearMethod):
"""AWQ linear method using IPEX for the CPU backend.
"""
def __init__(self, quant_config: IPEXConfig):
self.quant_config = quant_config # type: ignore
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
super().process_weights_after_loading(layer=layer)
bias = layer.bias if not layer.skip_bias_add else None
try:
import intel_extension_for_pytorch as ipex
if ipex.__version__ < "2.4.0":
raise ImportError("intel_extension_for_pytorch version is "
"wrong. Please install "
"intel_extension_for_pytorch>=2.4.0.")
except ImportError as err:
raise ImportError(
"Please install "
"intel_extension_for_pytorch>=2.4.0 via "
"`pip install intel_extension_for_pytorch>=2.4.0`"
" to use IPEX-AWQ linear method.") from err
# Using the compute dtype (lowp_mode) as INT8 to leverage instructions
# with better performance.
lowp_mode = ipex.quantization.WoqLowpMode.INT8
# The weight will be de-packed from INT4 to INT8.
weight_dtype = ipex.quantization.WoqWeightDtype.INT4
# The float activation will be quantized (dynamic, per-token) to INT8.
act_quant_mode = ipex.quantization.WoqActQuantMode.PER_BATCH
qconfig = ipex.quantization.get_weight_only_quant_qconfig_mapping(
weight_dtype=weight_dtype,
lowp_mode=lowp_mode,
act_quant_mode=act_quant_mode,
group_size=self.quant_config.group_size,
)
layer.ipex_output_size = layer.qweight.size(
1) * self.quant_config.pack_factor
layer.ipex_qlinear = ipex.nn.modules.weight_only_quantization.\
WeightOnlyQuantizedLinear.from_weight(
layer.qweight,
layer.scales,
layer.qzeros,
layer.qweight.size(0),
layer.ipex_output_size,
qconfig=qconfig,
bias=bias,
group_size=self.quant_config.group_size,
quant_method=
self.quant_config.get_ipex_quant_method_id() # type: ignore
)
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
reshaped_x = x.reshape(-1, x.shape[-1])
out = layer.ipex_qlinear(reshaped_x)
return out.reshape(x.shape[:-1] + (layer.ipex_output_size, ))

View File

@ -215,7 +215,8 @@ class CPUWorker(LoraNotSupportedWorkerBase, LocalOrDistributedWorkerBase):
def init_device(self) -> None:
if self.local_omp_cpuid != "all":
ret = torch.ops._C_utils.init_cpu_threads_env(self.local_omp_cpuid)
logger.info(ret)
if ret:
logger.info(ret)
self.init_distributed_environment()
# Set random seed.