Implement approximate GELU kernels (#828)
This commit is contained in:
parent
a41c20435e
commit
d64bf1646c
@ -4,9 +4,25 @@ void silu_and_mul(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& input);
|
||||
|
||||
void gelu_new(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& input);
|
||||
|
||||
void gelu_fast(
|
||||
torch::Tensor& out,
|
||||
torch::Tensor& input);
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def(
|
||||
"silu_and_mul",
|
||||
&silu_and_mul,
|
||||
"Activation function used in SwiGLU.");
|
||||
m.def(
|
||||
"gelu_new",
|
||||
&gelu_new,
|
||||
"GELU implementation used in GPT-2.");
|
||||
m.def(
|
||||
"gelu_fast",
|
||||
&gelu_fast,
|
||||
"Approximate GELU implementation.");
|
||||
}
|
||||
|
||||
@ -46,3 +46,71 @@ void silu_and_mul(
|
||||
d);
|
||||
});
|
||||
}
|
||||
|
||||
namespace vllm {
|
||||
|
||||
// Element-wise activation kernel template.
|
||||
template<typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
|
||||
__global__ void activation_kernel(
|
||||
scalar_t* __restrict__ out, // [num_tokens, d]
|
||||
const scalar_t* __restrict__ input, // [num_tokens, d]
|
||||
const int d) {
|
||||
const int token_idx = blockIdx.x;
|
||||
for (int idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
||||
const scalar_t x = __ldg(&input[token_idx * d + idx]);
|
||||
out[token_idx * d + idx] = ACT_FN(x);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
// Launch element-wise activation kernel.
|
||||
#define LAUNCH_ACTIVATION_KERNEL(KERNEL) \
|
||||
int num_tokens = input.size(0); \
|
||||
int d = input.size(1); \
|
||||
dim3 grid(num_tokens); \
|
||||
dim3 block(std::min(d, 1024)); \
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2( \
|
||||
at::ScalarType::Half, \
|
||||
at::ScalarType::BFloat16, \
|
||||
input.scalar_type(), \
|
||||
"activation_kernel", \
|
||||
[&] { \
|
||||
vllm::activation_kernel<scalar_t, KERNEL<scalar_t>><<<grid, block, 0, stream>>>( \
|
||||
out.data_ptr<scalar_t>(), \
|
||||
input.data_ptr<scalar_t>(), \
|
||||
d); \
|
||||
});
|
||||
|
||||
namespace vllm {
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T gelu_new_kernel(const T& x) {
|
||||
const float x3 = (float) (x * x * x);
|
||||
const T t = (T) tanhf((T) (0.79788456f * (float) (x + (T) (0.044715f * x3))));
|
||||
return ((T) 0.5) * x * (((T) 1.0) + t);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T gelu_fast_kernel(const T& x) {
|
||||
const float f = (float) x;
|
||||
const T t = (T) tanhf(((T) (f * 0.79788456f)) * (((T) 1.0) + (T) (0.044715f * f) * x));
|
||||
return ((T) 0.5) * x * (((T) 1.0) + t);
|
||||
}
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
void gelu_new(
|
||||
torch::Tensor& out, // [num_tokens, d]
|
||||
torch::Tensor& input) // [num_tokens, d]
|
||||
{
|
||||
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_new_kernel);
|
||||
}
|
||||
|
||||
void gelu_fast(
|
||||
torch::Tensor& out, // [num_tokens, d]
|
||||
torch::Tensor& input) // [num_tokens, d]
|
||||
{
|
||||
LAUNCH_ACTIVATION_KERNEL(vllm::gelu_fast_kernel);
|
||||
}
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from transformers.activations import get_activation
|
||||
from vllm import activation_ops
|
||||
|
||||
|
||||
@ -28,3 +28,45 @@ def test_silu_and_mul() -> None:
|
||||
for d in [512, 4096, 5120, 13824]:
|
||||
print(f'Testing dtype={dtype}, num_tokens={num_tokens}, d={d}')
|
||||
run_silu_and_mul(num_tokens, d, dtype)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def run_gelu_new(
|
||||
num_tokens: int,
|
||||
d: int,
|
||||
dtype: torch.dtype,
|
||||
) -> None:
|
||||
x = torch.randn(num_tokens, d, dtype=dtype, device='cuda')
|
||||
out = torch.empty(num_tokens, d, dtype=dtype, device='cuda')
|
||||
activation_ops.gelu_new(out, x)
|
||||
ref_out = get_activation("gelu_new")(x)
|
||||
assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5)
|
||||
|
||||
|
||||
def test_gelu_new() -> None:
|
||||
for dtype in [torch.half, torch.bfloat16, torch.float]:
|
||||
for num_tokens in [7, 83, 2048]:
|
||||
for d in [512, 4096, 5120, 13824]:
|
||||
print(f'Testing dtype={dtype}, num_tokens={num_tokens}, d={d}')
|
||||
run_gelu_new(num_tokens, d, dtype)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def run_gelu_fast(
|
||||
num_tokens: int,
|
||||
d: int,
|
||||
dtype: torch.dtype,
|
||||
) -> None:
|
||||
x = torch.randn(num_tokens, d, dtype=dtype, device='cuda')
|
||||
out = torch.empty(num_tokens, d, dtype=dtype, device='cuda')
|
||||
activation_ops.gelu_fast(out, x)
|
||||
ref_out = get_activation("gelu_fast")(x)
|
||||
assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5)
|
||||
|
||||
|
||||
def test_gelu_fast() -> None:
|
||||
for dtype in [torch.half, torch.bfloat16, torch.float]:
|
||||
for num_tokens in [7, 83, 2048]:
|
||||
for d in [512, 4096, 5120, 13824]:
|
||||
print(f'Testing dtype={dtype}, num_tokens={num_tokens}, d={d}')
|
||||
run_gelu_fast(num_tokens, d, dtype)
|
||||
|
||||
@ -4,23 +4,6 @@ import torch.nn as nn
|
||||
|
||||
from vllm import activation_ops
|
||||
|
||||
_ACTIVATION_REGISTRY = {
|
||||
"gelu": nn.GELU(),
|
||||
# NOTE: The following GELU functions may introduce small rounding errors.
|
||||
"gelu_new": nn.GELU(approximate="tanh"),
|
||||
"gelu_fast": nn.GELU(approximate="tanh"),
|
||||
"gelu_pytorch_tanh": nn.GELU(approximate="tanh"),
|
||||
"relu": nn.ReLU(),
|
||||
}
|
||||
|
||||
|
||||
def get_act_fn(act_fn: str) -> nn.Module:
|
||||
"""Get an activation function by name."""
|
||||
act_fn = act_fn.lower()
|
||||
if act_fn in _ACTIVATION_REGISTRY:
|
||||
return _ACTIVATION_REGISTRY[act_fn]
|
||||
raise ValueError(f"Activation function {act_fn!r} is not supported.")
|
||||
|
||||
|
||||
class SiluAndMul(nn.Module):
|
||||
"""An activation function for SwiGLU.
|
||||
@ -38,3 +21,40 @@ class SiluAndMul(nn.Module):
|
||||
out = torch.empty(num_tokens, d, dtype=x.dtype, device=x.device)
|
||||
activation_ops.silu_and_mul(out, x)
|
||||
return out
|
||||
|
||||
|
||||
class NewGELU(nn.Module):
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
num_tokens = x.shape[0]
|
||||
d = x.shape[1]
|
||||
out = torch.empty(num_tokens, d, dtype=x.dtype, device=x.device)
|
||||
activation_ops.gelu_new(out, x)
|
||||
return out
|
||||
|
||||
|
||||
class FastGELU(nn.Module):
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
num_tokens = x.shape[0]
|
||||
d = x.shape[1]
|
||||
out = torch.empty(num_tokens, d, dtype=x.dtype, device=x.device)
|
||||
activation_ops.gelu_fast(out, x)
|
||||
return out
|
||||
|
||||
|
||||
_ACTIVATION_REGISTRY = {
|
||||
"gelu": nn.GELU(),
|
||||
"gelu_fast": FastGELU(),
|
||||
"gelu_new": NewGELU(),
|
||||
"gelu_pytorch_tanh": nn.GELU(approximate="tanh"),
|
||||
"relu": nn.ReLU(),
|
||||
}
|
||||
|
||||
|
||||
def get_act_fn(act_fn: str) -> nn.Module:
|
||||
"""Get an activation function by name."""
|
||||
act_fn = act_fn.lower()
|
||||
if act_fn in _ACTIVATION_REGISTRY:
|
||||
return _ACTIVATION_REGISTRY[act_fn]
|
||||
raise ValueError(f"Activation function {act_fn!r} is not supported.")
|
||||
|
||||
Loading…
Reference in New Issue
Block a user