[Hardware][CPU] Refactor CPU model runner (#8729)
This commit is contained in:
parent
9b8c8ba119
commit
e551ca1555
@ -1,3 +1,5 @@
|
||||
import dataclasses
|
||||
import weakref
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, Union
|
||||
|
||||
@ -17,7 +19,7 @@ from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
|
||||
from vllm.sequence import IntermediateTensors, SequenceGroupMetadata
|
||||
from vllm.utils import STR_NOT_IMPL_ENC_DEC_ERR_STRS, make_tensor_with_pad
|
||||
from vllm.worker.model_runner_base import (
|
||||
ModelRunnerBase, ModelRunnerInputBase,
|
||||
ModelRunnerBase, ModelRunnerInputBase, ModelRunnerInputBuilderBase,
|
||||
_add_attn_metadata_broadcastable_dict,
|
||||
_add_sampling_metadata_broadcastable_dict,
|
||||
_init_attn_metadata_from_tensor_dict,
|
||||
@ -32,16 +34,17 @@ _PAD_SLOT_ID = -1
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class CPUModelInput(ModelRunnerInputBase):
|
||||
class ModelInputForCPU(ModelRunnerInputBase):
|
||||
"""
|
||||
Used by the CPUModelRunner.
|
||||
Base class contains metadata needed for the base model forward pass on CPU
|
||||
"""
|
||||
input_tokens: Optional[torch.Tensor] = None
|
||||
input_positions: Optional[torch.Tensor] = None
|
||||
attn_metadata: Optional["AttentionMetadata"] = None
|
||||
sampling_metadata: Optional["SamplingMetadata"] = None
|
||||
multi_modal_kwargs: Optional[BatchedTensorInputs] = None
|
||||
virtual_engine: Optional[int] = None
|
||||
seq_lens: Optional[List[int]] = None
|
||||
query_lens: Optional[List[int]] = None
|
||||
|
||||
def as_broadcastable_tensor_dict(
|
||||
self) -> Dict[str, Union[int, torch.Tensor]]:
|
||||
@ -51,16 +54,44 @@ class CPUModelInput(ModelRunnerInputBase):
|
||||
"multi_modal_kwargs": self.multi_modal_kwargs,
|
||||
}
|
||||
_add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
|
||||
|
||||
return tensor_dict
|
||||
|
||||
@classmethod
|
||||
def from_broadcasted_tensor_dict(
|
||||
cls: Type["ModelInputForCPU"],
|
||||
tensor_dict: Dict[str, Any],
|
||||
attn_backend: Optional["AttentionBackend"] = None
|
||||
) -> "ModelInputForCPU":
|
||||
if attn_backend is not None:
|
||||
tensor_dict = _init_attn_metadata_from_tensor_dict(
|
||||
attn_backend, tensor_dict)
|
||||
return cls(**tensor_dict)
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class ModelInputForCPUWithSamplingMetadata(ModelInputForCPU):
|
||||
"""
|
||||
Used by the ModelRunner.
|
||||
"""
|
||||
sampling_metadata: Optional["SamplingMetadata"] = None
|
||||
|
||||
def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
|
||||
tensor_dict = {
|
||||
"input_tokens": self.input_tokens,
|
||||
"input_positions": self.input_positions,
|
||||
}
|
||||
_add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
|
||||
_add_sampling_metadata_broadcastable_dict(tensor_dict,
|
||||
self.sampling_metadata)
|
||||
return tensor_dict
|
||||
|
||||
@classmethod
|
||||
def from_broadcasted_tensor_dict(
|
||||
cls: Type["CPUModelInput"],
|
||||
tensor_dict: Dict[str, Any],
|
||||
attn_backend: Optional["AttentionBackend"] = None
|
||||
) -> "CPUModelInput":
|
||||
cls,
|
||||
tensor_dict: Dict[str, Any],
|
||||
attn_backend: Optional["AttentionBackend"] = None,
|
||||
) -> "ModelInputForCPUWithSamplingMetadata":
|
||||
tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
|
||||
if attn_backend is not None:
|
||||
tensor_dict = _init_attn_metadata_from_tensor_dict(
|
||||
@ -68,72 +99,52 @@ class CPUModelInput(ModelRunnerInputBase):
|
||||
return cls(**tensor_dict)
|
||||
|
||||
|
||||
class CPUModelRunner(ModelRunnerBase[CPUModelInput]):
|
||||
class ModelInputForCPUBuilder(ModelRunnerInputBuilderBase[ModelInputForCPU]):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_config: ModelConfig,
|
||||
parallel_config: ParallelConfig,
|
||||
scheduler_config: SchedulerConfig,
|
||||
device_config: DeviceConfig,
|
||||
cache_config: CacheConfig,
|
||||
load_config: LoadConfig,
|
||||
lora_config: Optional[LoRAConfig],
|
||||
kv_cache_dtype: Optional[str] = "auto",
|
||||
prompt_adapter_config: Optional[PromptAdapterConfig] = None,
|
||||
is_driver_worker: bool = False,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
self.model_config = model_config
|
||||
self.parallel_config = parallel_config
|
||||
self.scheduler_config = scheduler_config
|
||||
# Currently, CPU worker doesn't support chunked prefill.
|
||||
assert self.scheduler_config.chunked_prefill_enabled is False
|
||||
self.device_config = device_config
|
||||
self.cache_config = cache_config
|
||||
self.lora_config = lora_config
|
||||
self.prompt_adapter_config = prompt_adapter_config
|
||||
self.load_config = load_config
|
||||
self.is_driver_worker = is_driver_worker
|
||||
def __init__(self,
|
||||
runner: "CPUModelRunner",
|
||||
finished_requests_ids: Optional[List[str]] = None) -> None:
|
||||
super().__init__()
|
||||
self.seq_group_metadata_list: List[SequenceGroupMetadata] = []
|
||||
self.runner = runner
|
||||
self.model_input_cls = self.runner._model_input_cls
|
||||
self.attn_backend = self.runner.attn_backend
|
||||
self.sliding_window = self.runner.sliding_window
|
||||
self.block_size = self.runner.block_size
|
||||
self.device = self.runner.device
|
||||
self.multi_modal_input_mapper = self.runner.multi_modal_input_mapper
|
||||
|
||||
self.device = self.device_config.device
|
||||
def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata):
|
||||
self.seq_group_metadata_list.append(seq_group_metadata)
|
||||
|
||||
self.kv_cache_dtype = kv_cache_dtype
|
||||
self.sliding_window = model_config.get_sliding_window()
|
||||
self.block_size = cache_config.block_size
|
||||
self.attn_backend = get_attn_backend(
|
||||
self.model_config.get_num_attention_heads(self.parallel_config),
|
||||
self.model_config.get_head_size(),
|
||||
self.model_config.get_num_kv_heads(self.parallel_config),
|
||||
self.model_config.get_sliding_window(),
|
||||
self.model_config.dtype,
|
||||
self.kv_cache_dtype,
|
||||
self.block_size,
|
||||
def build(self) -> ModelInputForCPU:
|
||||
multi_modal_kwargs = None
|
||||
# NOTE: We assume that all sequences in the group are all prompts or
|
||||
# all decodes.
|
||||
is_prompt = self.seq_group_metadata_list[0].is_prompt
|
||||
# Prepare input tensors.
|
||||
if is_prompt:
|
||||
(input_tokens, input_positions, attn_metadata, seq_lens,
|
||||
multi_modal_kwargs) = self._prepare_prompt(
|
||||
self.seq_group_metadata_list)
|
||||
else:
|
||||
(input_tokens, input_positions,
|
||||
attn_metadata) = self._prepare_decode(
|
||||
self.seq_group_metadata_list)
|
||||
seq_lens = []
|
||||
|
||||
return self.model_input_cls(
|
||||
input_tokens=input_tokens,
|
||||
input_positions=input_positions,
|
||||
attn_metadata=attn_metadata,
|
||||
multi_modal_kwargs=multi_modal_kwargs,
|
||||
# query_lens is not needed if chunked prefill is not
|
||||
# supported. Since CPU worker doesn't support chunked prefill
|
||||
# just use seq_lens instead.
|
||||
seq_lens=seq_lens,
|
||||
query_lens=seq_lens,
|
||||
)
|
||||
|
||||
# Multi-modal data support
|
||||
self.mm_registry = MULTIMODAL_REGISTRY
|
||||
self.multi_modal_input_mapper = self.mm_registry \
|
||||
.create_input_mapper(self.model_config)
|
||||
self.mm_registry.init_mm_limits_per_prompt(self.model_config)
|
||||
|
||||
# Lazy initialization.
|
||||
self.model: nn.Module # Set after init_Model
|
||||
|
||||
if self.model_config.is_encoder_decoder_model:
|
||||
raise NotImplementedError(
|
||||
STR_NOT_IMPL_ENC_DEC_ERR_STRS['STR_NOT_IMPL_ENC_DEC_CPU'])
|
||||
|
||||
def load_model(self) -> None:
|
||||
self.model = get_model(model_config=self.model_config,
|
||||
load_config=self.load_config,
|
||||
device_config=self.device_config,
|
||||
lora_config=self.lora_config,
|
||||
parallel_config=self.parallel_config,
|
||||
scheduler_config=self.scheduler_config,
|
||||
cache_config=self.cache_config)
|
||||
|
||||
def _prepare_prompt(
|
||||
self,
|
||||
seq_group_metadata_list: List[SequenceGroupMetadata],
|
||||
@ -165,8 +176,7 @@ class CPUModelRunner(ModelRunnerBase[CPUModelInput]):
|
||||
# is always the first token in the sequence.
|
||||
input_positions.extend(list(range(computed_len, seq_len)))
|
||||
|
||||
mm_data = seq_group_metadata.multi_modal_data
|
||||
if mm_data:
|
||||
if (mm_data := seq_group_metadata.multi_modal_data):
|
||||
mm_kwargs = self.multi_modal_input_mapper(mm_data)
|
||||
multi_modal_inputs_list.append(mm_kwargs)
|
||||
|
||||
@ -302,56 +312,130 @@ class CPUModelRunner(ModelRunnerBase[CPUModelInput]):
|
||||
attn_metadata,
|
||||
)
|
||||
|
||||
|
||||
class CPUModelRunner(ModelRunnerBase[ModelInputForCPU]):
|
||||
_model_input_cls: Type[ModelInputForCPUWithSamplingMetadata] = (
|
||||
ModelInputForCPUWithSamplingMetadata)
|
||||
_builder_cls: Type[ModelInputForCPUBuilder] = ModelInputForCPUBuilder
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_config: ModelConfig,
|
||||
parallel_config: ParallelConfig,
|
||||
scheduler_config: SchedulerConfig,
|
||||
device_config: DeviceConfig,
|
||||
cache_config: CacheConfig,
|
||||
load_config: LoadConfig,
|
||||
lora_config: Optional[LoRAConfig],
|
||||
kv_cache_dtype: Optional[str] = "auto",
|
||||
prompt_adapter_config: Optional[PromptAdapterConfig] = None,
|
||||
is_driver_worker: bool = False,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
self.model_config = model_config
|
||||
self.parallel_config = parallel_config
|
||||
self.scheduler_config = scheduler_config
|
||||
# Currently, CPU worker doesn't support chunked prefill.
|
||||
assert self.scheduler_config.chunked_prefill_enabled is False
|
||||
self.device_config = device_config
|
||||
self.cache_config = cache_config
|
||||
self.lora_config = lora_config
|
||||
self.prompt_adapter_config = prompt_adapter_config
|
||||
self.load_config = load_config
|
||||
self.is_driver_worker = is_driver_worker
|
||||
|
||||
self.device = self.device_config.device
|
||||
|
||||
self.kv_cache_dtype = kv_cache_dtype
|
||||
self.sliding_window = model_config.get_sliding_window()
|
||||
self.block_size = cache_config.block_size
|
||||
self.attn_backend = get_attn_backend(
|
||||
self.model_config.get_num_attention_heads(self.parallel_config),
|
||||
self.model_config.get_head_size(),
|
||||
self.model_config.get_num_kv_heads(self.parallel_config),
|
||||
self.model_config.get_sliding_window(),
|
||||
self.model_config.dtype,
|
||||
self.kv_cache_dtype,
|
||||
self.block_size,
|
||||
)
|
||||
|
||||
# Multi-modal data support
|
||||
self.mm_registry = MULTIMODAL_REGISTRY
|
||||
self.multi_modal_input_mapper = self.mm_registry \
|
||||
.create_input_mapper(self.model_config)
|
||||
self.mm_registry.init_mm_limits_per_prompt(self.model_config)
|
||||
|
||||
# Lazy initialization.
|
||||
self.model: nn.Module # Set after init_Model
|
||||
|
||||
if self.model_config.is_encoder_decoder_model:
|
||||
raise NotImplementedError(
|
||||
STR_NOT_IMPL_ENC_DEC_ERR_STRS['STR_NOT_IMPL_ENC_DEC_CPU'])
|
||||
|
||||
def load_model(self) -> None:
|
||||
self.model = get_model(model_config=self.model_config,
|
||||
load_config=self.load_config,
|
||||
device_config=self.device_config,
|
||||
lora_config=self.lora_config,
|
||||
parallel_config=self.parallel_config,
|
||||
scheduler_config=self.scheduler_config,
|
||||
cache_config=self.cache_config)
|
||||
|
||||
def make_model_input_from_broadcasted_tensor_dict(
|
||||
self,
|
||||
tensor_dict: Dict[str, Any],
|
||||
) -> CPUModelInput:
|
||||
return CPUModelInput.from_broadcasted_tensor_dict(
|
||||
) -> ModelInputForCPU:
|
||||
return ModelInputForCPU.from_broadcasted_tensor_dict(
|
||||
tensor_dict,
|
||||
attn_backend=self.attn_backend,
|
||||
)
|
||||
|
||||
def _prepare_model_input_tensors(
|
||||
self,
|
||||
seq_group_metadata_list: List[SequenceGroupMetadata],
|
||||
finished_requests_ids: Optional[List[str]] = None
|
||||
) -> ModelInputForCPUWithSamplingMetadata:
|
||||
"""Helper method to prepare the model input based on a given sequence
|
||||
group. Prepares metadata needed for the base model forward pass but not
|
||||
metadata for possible additional steps, e.g., sampling.
|
||||
|
||||
"""
|
||||
builder = self._builder_cls(weakref.proxy(self), finished_requests_ids)
|
||||
for seq_group_metadata in seq_group_metadata_list:
|
||||
builder.add_seq_group(seq_group_metadata)
|
||||
|
||||
return builder.build() # type: ignore
|
||||
|
||||
def prepare_model_input(
|
||||
self,
|
||||
seq_group_metadata_list: List[SequenceGroupMetadata],
|
||||
virtual_engine: int = 0,
|
||||
finished_requests_ids: Optional[List[str]] = None
|
||||
) -> CPUModelInput:
|
||||
multi_modal_kwargs = None
|
||||
# NOTE: We assume that all sequences in the group are all prompts or
|
||||
# all decodes.
|
||||
is_prompt = seq_group_metadata_list[0].is_prompt
|
||||
# Prepare input tensors.
|
||||
if is_prompt:
|
||||
(input_tokens, input_positions, attn_metadata, seq_lens,
|
||||
multi_modal_kwargs
|
||||
) = self._prepare_prompt(seq_group_metadata_list)
|
||||
else:
|
||||
(input_tokens, input_positions,
|
||||
attn_metadata) = self._prepare_decode(seq_group_metadata_list)
|
||||
seq_lens = []
|
||||
sampling_metadata = SamplingMetadata.prepare(
|
||||
seq_group_metadata_list,
|
||||
seq_lens,
|
||||
# query_lens is not needed if chunked prefill is not
|
||||
# supported. Since CPU worker doesn't support chunked prefill
|
||||
# just use seq_lens instead.
|
||||
seq_lens,
|
||||
self.device,
|
||||
pin_memory=False,
|
||||
generators=self.get_generators(finished_requests_ids))
|
||||
return CPUModelInput(
|
||||
input_tokens=input_tokens,
|
||||
input_positions=input_positions,
|
||||
attn_metadata=attn_metadata,
|
||||
sampling_metadata=sampling_metadata,
|
||||
multi_modal_kwargs=multi_modal_kwargs,
|
||||
)
|
||||
self,
|
||||
seq_group_metadata_list: List[SequenceGroupMetadata],
|
||||
virtual_engine: int = 0,
|
||||
finished_requests_ids: Optional[List[str]] = None
|
||||
) -> ModelInputForCPUWithSamplingMetadata:
|
||||
"""Prepare the model input based on a given sequence group, including
|
||||
metadata for the sampling step.
|
||||
|
||||
"""
|
||||
model_input = self._prepare_model_input_tensors(
|
||||
seq_group_metadata_list, finished_requests_ids)
|
||||
# Sampling metadata is only required for the final pp group
|
||||
generators = self.get_generators(finished_requests_ids)
|
||||
sampling_metadata = SamplingMetadata.prepare(seq_group_metadata_list,
|
||||
model_input.seq_lens,
|
||||
model_input.query_lens,
|
||||
self.device,
|
||||
pin_memory=False,
|
||||
generators=generators)
|
||||
|
||||
return dataclasses.replace(model_input,
|
||||
sampling_metadata=sampling_metadata,
|
||||
virtual_engine=virtual_engine)
|
||||
|
||||
@torch.no_grad()
|
||||
def execute_model(
|
||||
self,
|
||||
model_input: CPUModelInput,
|
||||
model_input: ModelInputForCPUWithSamplingMetadata,
|
||||
kv_caches: List[torch.Tensor],
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
num_steps: int = 1,
|
||||
|
||||
Loading…
Reference in New Issue
Block a user