[Core] Eliminate parallel worker per-step task scheduling overhead (#4894)

This commit is contained in:
Nick Hill 2024-05-22 14:17:27 -07:00 committed by GitHub
parent 97b030005c
commit eb6d3c264d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 350 additions and 211 deletions

View File

@ -234,6 +234,14 @@ class _AsyncLLMEngine(LLMEngine):
# Log stats.
self.do_log_stats(scheduler_outputs, output)
if not request_outputs:
# Stop the execute model loop in parallel workers until there are
# more requests to process. This avoids waiting indefinitely in
# torch.distributed ops which may otherwise timeout, and unblocks
# the RPC thread in the workers so that they can process any other
# queued control plane messages, such as add/remove lora adapters.
await self.model_executor.stop_remote_worker_execution_loop_async()
return request_outputs
async def encode_request_async(
@ -687,7 +695,7 @@ class AsyncLLMEngine:
multi_modal_data: Multi modal data per request.
Yields:
The output `EmbeddingRequestOutput` objects from the LLMEngine
The output `EmbeddingRequestOutput` objects from the LLMEngine
for the request.
Details:

View File

@ -692,6 +692,14 @@ class LLMEngine:
# Log stats.
self.do_log_stats(scheduler_outputs, output)
if not request_outputs:
# Stop the execute model loop in parallel workers until there are
# more requests to process. This avoids waiting indefinitely in
# torch.distributed ops which may otherwise timeout, and unblocks
# the RPC thread in the workers so that they can process any other
# queued control plane messages, such as add/remove lora adapters.
self.model_executor.stop_remote_worker_execution_loop()
return request_outputs
def do_log_stats(

View File

@ -1,11 +1,12 @@
import asyncio
from abc import abstractmethod
from typing import Any, Dict, List, Optional, Set, Tuple
from typing import Any, Awaitable, Dict, List, Optional, Set, Tuple, Union
from vllm.executor.executor_base import ExecutorAsyncBase
from vllm.executor.gpu_executor import GPUExecutor
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.sequence import SamplerOutput
from vllm.sequence import ExecuteModelRequest, SamplerOutput
logger = init_logger(__name__)
@ -13,6 +14,16 @@ logger = init_logger(__name__)
class DistributedGPUExecutor(GPUExecutor):
"""Abstract superclass of multi-GPU executor implementations."""
def __init__(self, *args, **kwargs):
# This is non-None when the execute model loop is running
# in the parallel workers. It's a coroutine in the AsyncLLMEngine case.
self.parallel_worker_tasks: Optional[Union[Any, Awaitable[Any]]] = None
# Updated by implementations that require additional args to be passed
# to the _run_workers execute_model call
self.extra_execute_model_run_workers_kwargs: Dict[str, Any] = {}
super().__init__(*args, **kwargs)
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Determine the number of available KV blocks.
@ -52,13 +63,28 @@ class DistributedGPUExecutor(GPUExecutor):
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks)
def execute_model(self, *args, **kwargs) -> List[SamplerOutput]:
all_outputs = self._run_workers("execute_model",
driver_args=args,
driver_kwargs=kwargs)
def execute_model(
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
if self.parallel_worker_tasks is None:
self.parallel_worker_tasks = self._run_workers(
"start_worker_execution_loop",
async_run_remote_workers_only=True,
**self.extra_execute_model_run_workers_kwargs)
# Only the driver worker returns the sampling results.
return all_outputs[0]
return self._driver_execute_model(execute_model_req)
def stop_remote_worker_execution_loop(self) -> None:
if self.parallel_worker_tasks is None:
return
self._driver_execute_model()
parallel_worker_tasks = self.parallel_worker_tasks
self.parallel_worker_tasks = None
# Ensure that workers exit model loop cleanly
# (this will raise otherwise)
self._wait_for_tasks_completion(parallel_worker_tasks)
def add_lora(self, lora_request: LoRARequest) -> bool:
assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
@ -88,39 +114,84 @@ class DistributedGPUExecutor(GPUExecutor):
pattern=pattern,
max_size=max_size)
@abstractmethod
def _driver_execute_model(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
"""Run execute_model in the driver worker.
Passing None will cause the driver to stop the model execution
loop running in each of the remote workers.
"""
raise NotImplementedError
@abstractmethod
def _run_workers(
self,
method: str,
*args,
driver_args: Optional[Tuple[Any, ...]] = None,
driver_kwargs: Optional[Dict[str, Any]] = None,
async_run_remote_workers_only: bool = False,
max_concurrent_workers: Optional[int] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers."""
"""Runs the given method on all workers.
Args:
async_run_remote_workers_only: If True the method will be run only
in the remote workers, not the driver worker. It will also be
run asynchronously and return a list of futures rather than
blocking on the results.
"""
raise NotImplementedError
@abstractmethod
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
"""Wait for futures returned from _run_workers() with
async_run_remote_workers_only to complete."""
raise NotImplementedError
class DistributedGPUExecutorAsync(DistributedGPUExecutor, ExecutorAsyncBase):
@abstractmethod
async def _run_workers_async(
self,
method: str,
*args,
driver_args: Optional[Tuple[Any, ...]] = None,
driver_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers."""
raise NotImplementedError
async def execute_model_async(self, *args,
**kwargs) -> List[SamplerOutput]:
all_outputs = await self._run_workers_async("execute_model",
driver_args=args,
driver_kwargs=kwargs)
async def execute_model_async(
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
if self.parallel_worker_tasks is None:
# Start model execution loop running in the parallel workers
self.parallel_worker_tasks = asyncio.create_task(
self._start_worker_execution_loop())
# Only the driver worker returns the sampling results.
return all_outputs[0]
return await self._driver_execute_model_async(execute_model_req)
async def stop_remote_worker_execution_loop_async(self) -> None:
if self.parallel_worker_tasks is None:
return
await self._driver_execute_model_async()
parallel_worker_tasks = self.parallel_worker_tasks
self.parallel_worker_tasks = None
# Ensure that workers exit model loop cleanly
# (this will raise otherwise)
await parallel_worker_tasks
@abstractmethod
async def _driver_execute_model_async(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
"""Execute the model asynchronously in the driver worker.
Passing None will cause the driver to stop the model execution
loop running in each of the remote workers.
"""
raise NotImplementedError
@abstractmethod
async def _start_worker_execution_loop(self):
"""Run execution loop on all workers. It guarantees all workers run
the loop or None of them is running the loop. Loop can be stopped by
`stop_remote_worker_execution_loop`.
The API is idempotent (guarantee only 1 loop run at any moment)."""
raise NotImplementedError

View File

@ -74,6 +74,10 @@ class ExecutorBase(ABC):
"""Executes at least one model step on the given sequences."""
raise NotImplementedError
def stop_remote_worker_execution_loop(self) -> None:
"""Releases parallel workers from model loop."""
return
@abstractmethod
def add_lora(self, lora_request: LoRARequest) -> bool:
raise NotImplementedError
@ -109,6 +113,10 @@ class ExecutorAsyncBase(ExecutorBase):
"""Executes one model step on the given sequences."""
raise NotImplementedError
async def stop_remote_worker_execution_loop_async(self) -> None:
"""Releases parallel workers from model loop."""
return
async def check_health_async(self) -> None:
"""Checks if the executor is healthy. If not, it should raise an
exception."""

View File

@ -1,13 +1,14 @@
import asyncio
import os
from functools import partial
from typing import Any, Dict, Optional, Tuple
from typing import Any, List, Optional
from vllm.executor.distributed_gpu_executor import ( # yapf: disable
DistributedGPUExecutor, DistributedGPUExecutorAsync)
from vllm.executor.multiproc_worker_utils import (ProcessWorkerWrapper,
ResultHandler, WorkerMonitor)
from vllm.logger import init_logger
from vllm.sequence import ExecuteModelRequest, SamplerOutput
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
get_vllm_instance_id, make_async)
@ -71,16 +72,34 @@ class MultiprocessingGPUExecutor(DistributedGPUExecutor):
None)) is not None:
worker_monitor.close()
def _driver_execute_model(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
"""Run execute_model in the driver worker.
Passing None will cause the driver to stop the model execution
loop running in each of the remote workers.
"""
return self.driver_worker.execute_model(
execute_model_req=execute_model_req)
def _run_workers(
self,
method: str,
*args,
driver_args: Optional[Tuple[Any, ...]] = None,
driver_kwargs: Optional[Dict[str, Any]] = None,
async_run_remote_workers_only: bool = False,
max_concurrent_workers: Optional[int] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers."""
"""Runs the given method on all workers.
Args:
async_run_remote_workers_only: If True the method will be run only
in the remote workers, not the driver worker. It will also be
run asynchronously and return a list of futures rather than
blocking on the results.
"""
if max_concurrent_workers:
raise NotImplementedError(
@ -92,15 +111,12 @@ class MultiprocessingGPUExecutor(DistributedGPUExecutor):
for worker in self.workers
]
if driver_args is None:
driver_args = args
if driver_kwargs is None:
driver_kwargs = kwargs
if async_run_remote_workers_only:
# Just return futures
return worker_outputs
# Start the driver worker after all the ray workers.
driver_worker_method = getattr(self.driver_worker, method)
driver_worker_output = driver_worker_method(*driver_args,
**driver_kwargs)
driver_worker_output = driver_worker_method(*args, **kwargs)
# Get the results of the workers.
return [driver_worker_output
@ -111,30 +127,29 @@ class MultiprocessingGPUExecutor(DistributedGPUExecutor):
if not self.worker_monitor.is_alive():
raise RuntimeError("Worker processes are not running")
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
"""Wait for futures returned from _run_workers() with
async_run_remote_workers_only to complete."""
for result in parallel_worker_tasks:
result.get()
class MultiprocessingGPUExecutorAsync(MultiprocessingGPUExecutor,
DistributedGPUExecutorAsync):
async def _run_workers_async(
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.driver_exec_model = make_async(self.driver_worker.execute_model)
async def _driver_execute_model_async(
self,
method: str,
*args,
driver_args: Optional[Tuple[Any, ...]] = None,
driver_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers."""
if driver_args is None:
driver_args = args
if driver_kwargs is None:
driver_kwargs = kwargs
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
return await self.driver_exec_model(execute_model_req)
driver_executor = make_async(getattr(self.driver_worker, method))
# Run all the workers asynchronously.
coros = [driver_executor(*driver_args, **driver_kwargs)] + [
worker.execute_method_async(method, *args, **kwargs)
async def _start_worker_execution_loop(self):
coros = [
worker.execute_method_async("start_worker_execution_loop")
for worker in self.workers
]
return await asyncio.gather(*coros)

View File

@ -42,6 +42,8 @@ class RayGPUExecutor(DistributedGPUExecutor):
self.forward_dag = None
if USE_RAY_COMPILED_DAG:
self.forward_dag = self._compiled_ray_dag()
self.extra_execute_model_run_workers_kwargs[
"use_ray_compiled_dag"] = True
def _configure_ray_workers_use_nsight(self,
ray_remote_kwargs) -> Dict[str, Any]:
@ -171,23 +173,23 @@ class RayGPUExecutor(DistributedGPUExecutor):
max_concurrent_workers=self.parallel_config.
max_parallel_loading_workers)
def execute_model(
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
all_outputs = self._run_workers(
"execute_model",
driver_kwargs={"execute_model_req": execute_model_req},
use_ray_compiled_dag=USE_RAY_COMPILED_DAG)
def _driver_execute_model(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
"""Run execute_model in the driver worker.
# Only the driver worker returns the sampling results.
return all_outputs[0]
Passing None will cause the driver to stop the model execution
loop running in each of the remote workers.
"""
return self.driver_worker.execute_method("execute_model",
execute_model_req)
def _run_workers(
self,
method: str,
*args,
driver_args: Optional[Tuple[Any, ...]] = None,
driver_kwargs: Optional[Dict[str, Any]] = None,
async_run_remote_workers_only: bool = False,
all_args: Optional[List[Tuple[Any, ...]]] = None,
all_kwargs: Optional[List[Dict[str, Any]]] = None,
use_dummy_driver: bool = False,
@ -198,9 +200,11 @@ class RayGPUExecutor(DistributedGPUExecutor):
"""Runs the given method on all workers. Can be used in the following
ways:
- async_run_remote_workers_only: If True the method will be run only
in the remote workers, not the driver worker. It will also be
run asynchronously and return a list of futures rather than blocking
on the results.
- args/kwargs: All workers share the same args/kwargs
- args/kwargs and driver_args/driver_kwargs: Driver worker has
different args
- all_args/all_kwargs: args/kwargs for each worker are specified
individually
"""
@ -209,11 +213,6 @@ class RayGPUExecutor(DistributedGPUExecutor):
raise NotImplementedError(
"max_concurrent_workers is not supported yet.")
if driver_args is None:
driver_args = args if all_args is None else all_args[0]
if driver_kwargs is None:
driver_kwargs = kwargs if all_kwargs is None else all_kwargs[0]
count = len(self.workers)
all_worker_args = repeat(args, count) if all_args is None \
else islice(all_args, 1, None)
@ -225,6 +224,7 @@ class RayGPUExecutor(DistributedGPUExecutor):
# input. TODO(sang): Fix it.
assert self.forward_dag is not None
output_channels = self.forward_dag.execute(1)
ray_worker_outputs = []
else:
# Start the ray workers first.
ray_worker_outputs = [
@ -234,6 +234,13 @@ class RayGPUExecutor(DistributedGPUExecutor):
) in zip(self.workers, all_worker_args, all_worker_kwargs)
]
if async_run_remote_workers_only:
# Just return futures
return ray_worker_outputs
driver_args = args if all_args is None else all_args[0]
driver_kwargs = kwargs if all_kwargs is None else all_kwargs[0]
# Start the driver worker after all the ray workers.
if not use_dummy_driver:
driver_worker_output = self.driver_worker.execute_method(
@ -260,6 +267,11 @@ class RayGPUExecutor(DistributedGPUExecutor):
return [driver_worker_output] + ray_worker_outputs
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
"""Wait for futures returned from _run_workers() with
async_run_remote_workers_only to complete."""
ray.get(parallel_worker_tasks)
def _compiled_ray_dag(self):
import pkg_resources
required_version = "2.9"
@ -303,30 +315,18 @@ class RayGPUExecutorAsync(RayGPUExecutor, DistributedGPUExecutorAsync):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.driver_executor = make_async(self.driver_worker.execute_method)
self.driver_exec_method = make_async(self.driver_worker.execute_method)
async def _run_workers_async(
async def _driver_execute_model_async(
self,
method: str,
*args,
driver_args: Optional[Tuple[Any, ...]] = None,
driver_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers."""
coros = []
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
return await self.driver_exec_method("execute_model",
execute_model_req)
if driver_args is None:
driver_args = args
if driver_kwargs is None:
driver_kwargs = kwargs
coros.append(
self.driver_executor(method, *driver_args, **driver_kwargs))
# Run the ray workers asynchronously.
for worker in self.workers:
coros.append(worker.execute_method.remote(method, *args, **kwargs))
all_outputs = await asyncio.gather(*coros)
return all_outputs
async def _start_worker_execution_loop(self):
coros = [
worker.execute_method.remote("start_worker_execution_loop")
for worker in self.workers
]
return await asyncio.gather(*coros)

View File

@ -47,7 +47,9 @@ class NGramWorker(LoraNotSupportedWorkerBase):
# NGram don't need gpu sampler
pass
def execute_model(self, execute_model_req: ExecuteModelRequest) -> None:
def execute_model(
self,
execute_model_req: Optional[ExecuteModelRequest] = None) -> None:
"""NGram doesn't depend on model execution, just pass this function"""
pass

View File

@ -231,35 +231,6 @@ class SpecDecodeWorker(LoraNotSupportedWorkerBase):
self.proposer_worker.initialize_cache(num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks)
def _broadcast_control_flow_decision(
self,
execute_model_req: Optional[ExecuteModelRequest] = None,
disable_all_speculation: bool = False) -> Tuple[int, bool]:
"""Broadcast how many lookahead slots are scheduled for this step, and
whether all speculation is disabled, to all non-driver workers.
This is required as if the number of draft model runs changes
dynamically, the non-driver workers won't know unless we perform a
communication to inform then.
Returns the broadcasted num_lookahead_slots and disable_all_speculation.
"""
if self.rank == self._driver_rank:
assert execute_model_req is not None
broadcast_dict = dict(
num_lookahead_slots=execute_model_req.num_lookahead_slots,
disable_all_speculation=disable_all_speculation,
)
broadcast_tensor_dict(broadcast_dict, src=self._driver_rank)
else:
assert execute_model_req is None
broadcast_dict = broadcast_tensor_dict(src=self._driver_rank)
return (broadcast_dict["num_lookahead_slots"],
broadcast_dict["disable_all_speculation"])
@torch.inference_mode()
def execute_model(
self,
@ -267,39 +238,58 @@ class SpecDecodeWorker(LoraNotSupportedWorkerBase):
) -> List[SamplerOutput]:
"""Perform speculative decoding on the input batch.
"""
disable_all_speculation = False
if self.rank == self._driver_rank:
disable_all_speculation = self._should_disable_all_speculation(
execute_model_req)
(num_lookahead_slots,
disable_all_speculation) = self._broadcast_control_flow_decision(
execute_model_req, disable_all_speculation)
if self.rank == self._driver_rank:
assert execute_model_req is not None
assert execute_model_req.seq_group_metadata_list is not None, (
"speculative decoding requires non-None seq_group_metadata_list"
)
self._maybe_disable_speculative_tokens(
disable_all_speculation,
execute_model_req.seq_group_metadata_list)
# If no spec tokens, call the proposer and scorer workers normally.
# Used for prefill.
if num_lookahead_slots == 0 or len(
execute_model_req.seq_group_metadata_list) == 0:
return self._run_no_spec(execute_model_req,
skip_proposer=disable_all_speculation)
return self._run_speculative_decoding_step(execute_model_req,
num_lookahead_slots)
else:
self._run_non_driver_rank(num_lookahead_slots)
if self.rank != self._driver_rank:
self._run_non_driver_rank()
return []
if execute_model_req is None:
# This signals that there's no more requests to process for now.
# All workers are running infinite loop with broadcast_tensor_dict,
# and it stops the loop when the driver broadcasts an empty input.
# Send an empty input to notify all other workers to stop their
# execution loop.
broadcast_tensor_dict({}, src=0)
return []
disable_all_speculation = self._should_disable_all_speculation(
execute_model_req)
num_lookahead_slots = execute_model_req.num_lookahead_slots
# Broadcast how many lookahead slots are scheduled for this step, and
# whether all speculation is disabled, to all non-driver workers.
# This is required as if the number of draft model runs changes
# dynamically, the non-driver workers won't know unless we perform a
# communication to inform then.
broadcast_dict = dict(
num_lookahead_slots=num_lookahead_slots,
disable_all_speculation=disable_all_speculation,
)
broadcast_tensor_dict(broadcast_dict, src=self._driver_rank)
assert execute_model_req.seq_group_metadata_list is not None, (
"speculative decoding requires non-None seq_group_metadata_list")
self._maybe_disable_speculative_tokens(
disable_all_speculation, execute_model_req.seq_group_metadata_list)
# If no spec tokens, call the proposer and scorer workers normally.
# Used for prefill.
if num_lookahead_slots == 0 or len(
execute_model_req.seq_group_metadata_list) == 0:
return self._run_no_spec(execute_model_req,
skip_proposer=disable_all_speculation)
return self._run_speculative_decoding_step(execute_model_req,
num_lookahead_slots)
@torch.inference_mode()
def start_worker_execution_loop(self) -> None:
"""Execute model loop to perform speculative decoding
in parallel worker."""
while self._run_non_driver_rank():
pass
def _should_disable_all_speculation(
self, execute_model_req: ExecuteModelRequest) -> bool:
# When the batch size is too large, disable speculative decoding
@ -346,13 +336,19 @@ class SpecDecodeWorker(LoraNotSupportedWorkerBase):
sampler_output.logprobs = None
return [sampler_output]
def _run_non_driver_rank(self, num_lookahead_slots: int) -> None:
def _run_non_driver_rank(self) -> bool:
"""Run proposer and verifier model in non-driver workers. This is used
for both speculation cases (num_lookahead_slots>0) and non-speculation
cases (e.g. prefill).
Returns True iff there are remaining sequences to process.
"""
# In non-driver workers the input is None
execute_model_req = None
assert self.rank != self._driver_rank
data = broadcast_tensor_dict(src=self._driver_rank)
if not data:
return False
num_lookahead_slots = data["num_lookahead_slots"]
# Even if num_lookahead_slots is zero, we want to run the proposer model
# as it may have KV.
@ -360,9 +356,10 @@ class SpecDecodeWorker(LoraNotSupportedWorkerBase):
# We run the proposer once per lookahead slot. In the future we should
# delegate how many times it runs to the proposer.
for _ in range(max(num_lookahead_slots, 1)):
self.proposer_worker.execute_model(execute_model_req)
self.proposer_worker.execute_model()
self.scorer_worker.execute_model(execute_model_req)
self.scorer_worker.execute_model()
return True
@nvtx_range("spec_decode_worker._run_speculative_decoding_step")
def _run_speculative_decoding_step(

View File

@ -47,7 +47,7 @@ class EmbeddingModelRunner(ModelRunner):
@torch.inference_mode()
def execute_model(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
kv_caches: List[torch.Tensor],
) -> Optional[PoolerOutput]:
(input_tokens, input_positions, attn_metadata, pooling_metadata,
@ -84,10 +84,11 @@ class EmbeddingModelRunner(ModelRunner):
def prepare_input_tensors(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, PoolingMetadata,
Set[LoRARequest], LoRAMapping, torch.Tensor]:
if self.is_driver_worker:
assert seq_group_metadata_list is not None
# Prepare input tensors.
(
input_tokens,

View File

@ -609,10 +609,11 @@ class ModelRunner:
def prepare_input_tensors(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, SamplingMetadata,
Set[LoRARequest], LoRAMapping, torch.Tensor]:
if self.is_driver_worker:
assert seq_group_metadata_list is not None
# Prepare input tensors.
(
input_tokens,
@ -676,7 +677,7 @@ class ModelRunner:
@torch.inference_mode()
def execute_model(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
kv_caches: List[torch.Tensor],
) -> Optional[SamplerOutput]:
(input_tokens, input_positions, attn_metadata, sampling_metadata,

View File

@ -226,48 +226,42 @@ class Worker(WorkerBase):
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[Union[SamplerOutput, PoolerOutput]]:
if not self.is_driver_worker:
self._execute_model_non_driver()
return []
if execute_model_req is None:
seq_group_metadata_list = None
else:
seq_group_metadata_list = execute_model_req.seq_group_metadata_list
# This signals that there's no more requests to process for now.
# All workers are running infinite loop with broadcast_tensor_dict,
# and it stops the loop when the driver broadcasts an empty input.
# Send an empty input to notify all other workers to stop their
# execution loop.
broadcast_tensor_dict({}, src=0)
return []
blocks_to_swap_in: torch.Tensor
blocks_to_swap_out: torch.Tensor
blocks_to_copy: torch.Tensor
if self.is_driver_worker:
assert seq_group_metadata_list is not None
assert execute_model_req is not None
num_seq_groups = len(seq_group_metadata_list)
# `blocks_to_swap_in` and `blocks_to_swap_out` are cpu tensors.
# they contain parameters to launch cudamemcpyasync.
blocks_to_swap_in = torch.tensor(
execute_model_req.blocks_to_swap_in,
device="cpu",
dtype=torch.int64).view(-1, 2)
blocks_to_swap_out = torch.tensor(
execute_model_req.blocks_to_swap_out,
device="cpu",
dtype=torch.int64).view(-1, 2)
# `blocks_to_copy` is a gpu tensor. The src and tgt of
# blocks to copy are in the same device, and `blocks_to_copy`
# can be used directly within cuda kernels.
blocks_to_copy = torch.tensor(execute_model_req.blocks_to_copy,
device=self.device,
seq_group_metadata_list = execute_model_req.seq_group_metadata_list
num_seq_groups = len(seq_group_metadata_list)
# `blocks_to_swap_in` and `blocks_to_swap_out` are cpu tensors.
# they contain parameters to launch cudamemcpyasync.
blocks_to_swap_in = torch.tensor(execute_model_req.blocks_to_swap_in,
device="cpu",
dtype=torch.int64).view(-1, 2)
blocks_to_swap_out = torch.tensor(execute_model_req.blocks_to_swap_out,
device="cpu",
dtype=torch.int64).view(-1, 2)
data: Dict[str, Any] = {
"num_seq_groups": num_seq_groups,
"blocks_to_swap_in": blocks_to_swap_in,
"blocks_to_swap_out": blocks_to_swap_out,
"blocks_to_copy": blocks_to_copy,
}
broadcast_tensor_dict(data, src=0)
else:
data = broadcast_tensor_dict(src=0)
num_seq_groups = data["num_seq_groups"]
blocks_to_swap_in = data["blocks_to_swap_in"]
blocks_to_swap_out = data["blocks_to_swap_out"]
blocks_to_copy = data["blocks_to_copy"]
# `blocks_to_copy` is a gpu tensor. The src and tgt of
# blocks to copy are in the same device, and `blocks_to_copy`
# can be used directly within cuda kernels.
blocks_to_copy = torch.tensor(execute_model_req.blocks_to_copy,
device=self.device,
dtype=torch.int64).view(-1, 2)
data: Dict[str, Any] = {
"num_seq_groups": num_seq_groups,
"blocks_to_swap_in": blocks_to_swap_in,
"blocks_to_swap_out": blocks_to_swap_out,
"blocks_to_copy": blocks_to_copy,
}
broadcast_tensor_dict(data, src=0)
self.cache_swap(blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy)
@ -282,6 +276,39 @@ class Worker(WorkerBase):
# to conform to interface.
return [output]
@torch.inference_mode()
def start_worker_execution_loop(self) -> None:
"""Execute model loop in parallel worker.
You can stop the loop by executing a driver worker with an empty output.
See `stop_remote_worker_execution_loop` for more details.
"""
while self._execute_model_non_driver():
pass
def _execute_model_non_driver(self) -> bool:
"""Execute model in parallel worker.
Returns True iff there are remaining sequences to process.
"""
assert not self.is_driver_worker
data = broadcast_tensor_dict(src=0)
if not data:
return False
num_seq_groups = data.get("num_seq_groups", 0)
blocks_to_swap_in = data.get("blocks_to_swap_in")
blocks_to_swap_out = data.get("blocks_to_swap_out")
blocks_to_copy = data.get("blocks_to_copy")
self.cache_swap(blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy)
# If there is no input, we don't need to execute the model.
if num_seq_groups == 0:
return False
self.model_runner.execute_model(None, self.gpu_cache)
return True
def add_lora(self, lora_request: LoRARequest) -> bool:
return self.model_runner.add_lora(lora_request)

View File

@ -1,7 +1,7 @@
import importlib
import os
from abc import ABC, abstractmethod
from typing import Dict, List, Set, Tuple
from typing import Dict, List, Optional, Set, Tuple
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
@ -48,8 +48,9 @@ class WorkerBase(ABC):
@abstractmethod
def execute_model(
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
"""Executes at least one model step on the given sequences, unless no
sequences are provided."""
raise NotImplementedError